Pregunta
upstudy study bank question image url

\( 1 \leftarrow \begin{array}{l}\text { Ten years ago Salmon Acqua Farming Inc. issued twenty - five - year } 8 \% \text { annual coupon bonds with } \\ \text { a } \$ 1,000 \text { face value each. Since then, interest rates in general have fallen and the yield to maturity on } \\ \text { the Bacon bonds is now } 7 \% \text {. Given this information, what is the price today for such a bond? } \\ \text { A. } \$ 1,000 \\ \text { B. } \$ 914.41 \\ \text { C. } \$ 1,091.08 \\ \text { D. } \$ 1,116.54\end{array} \)

Ask by Haynes Rojas. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The price of the bond today is approximately \$1,091.08. **Answer:** **C. \$1,091.08**

Solución

To determine the current price of the Salmon Acqua Farming Inc. bond, we'll use the present value formula for bonds, which accounts for both the annual coupon payments and the face value of the bond. **Given:** - **Coupon Rate (C):** 8% of \$1,000 face value = \$80 annually - **Yield to Maturity (r):** 7% - **Time to Maturity (n):** Originally 25 years, but 10 years have passed, so 15 years remaining - **Face Value (FV):** \$1,000 **Formula:** \[ \text{Price} = C \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) + \frac{FV}{(1 + r)^n} \] **Calculations:** 1. **Present Value of Coupon Payments:** \[ C \times \left( \frac{1 - (1 + 0.07)^{-15}}{0.07} \right) \] \[ = 80 \times \left( \frac{1 - (1.07)^{-15}}{0.07} \right) \] \[ \approx 80 \times 9.120 \] \[ \approx \$729.60 \] 2. **Present Value of Face Value:** \[ \frac{1,000}{(1.07)^{15}} \] \[ \approx \frac{1,000}{2.764} \] \[ \approx \$361.60 \] 3. **Total Present Value (Price of the Bond):** \[ \$729.60 + \$361.60 = \$1,091.20 \] Given the calculations and the closest option available: **Answer:** **C. \$1,091.08**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the current price of the bond, we need to calculate the Present Value (PV) of the future cash flows, which consist of the annual coupon payments and the face value at maturity. The annual coupon payment is \( 8\% \) of \( \$1,000 \), which equals \( \$80 \). Since there are 15 years remaining (25 years - 10 years), we can use the formula for the price of a bond: \[ P = \sum_{t=1}^{n} \frac{C}{(1 + r)^t} + \frac{F}{(1 + r)^n} \] Where: - \( P \) = price of the bond - \( C \) = annual coupon payment = \( \$80 \) - \( F \) = face value of the bond = \( \$1,000 \) - \( r \) = yield to maturity = \( 0.07 \) - \( n \) = number of years remaining = 15 Calculating the present value of the coupons and the face value: 1. Present Value of Coupons: \[ PV_{coupons} = 80 \left( \frac{1 - (1 + 0.07)^{-15}}{0.07} \right) \approx 80 \cdot 9.107 = 728.56 \] 2. Present Value of Face Value: \[ PV_{face value} = \frac{1000}{(1 + 0.07)^{15}} \approx \frac{1000}{2.759} \approx 362.44 \] 3. Total Price of the Bond: \[ P = PV_{coupons} + PV_{face value} \approx 728.56 + 362.44 \approx 1,091.00 \] So the price today for the bond is approximately \( \$1,091.08 \), which corresponds to option C. Option C: \$1,091.08 is the right answer!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad