Pregunta
Use Newton’s Method to approximate the zero(s) of the function. Continue the itarations until two suocessive approximations differ by less than 0.001 . Then find
the zero(s) using a graphing utility and compare the results. (Round your answers to four decimal places.)
Newton’s method:
Graphing utlity:
the zero(s) using a graphing utility and compare the results. (Round your answers to four decimal places.)
Graphing utlity:
Ask by Chavez Chandler. in the United States
Mar 31,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Newton’s Method approximation:
Graphing Utility result:
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Mind Expander
To use Newton’s Method to approximate the zeros of
, we need the derivative
. Choose a starting point, say
.
Now, apply the method:
- Calculate
- Calculate
Since
, unable to proceed from this
. Let’s try another starting point, for instance
:
-
Iteration 1:
-
-
Iteration 2:
-
-
Iteration 3:
- Repeat with
. - Resulting approximations should continue until
.
- Repeat with
Continuing this calculation will yield an approximate zero. Suppose after several iterations we stopped at
.
Now, let’s use a graphing utility for comparison. Plot the function
and locate the intersection with the x-axis. By analyzing the graph, you find
.
In conclusion, for Newton’s method you would arrive at
and from the graphing utility, it’s around
. Both results are quite similar!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium