Integration Prep 1. Find \( \int \frac{\sqrt{x}-3 x^{2}}{4 x^{3}} \mathrm{~d} x \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To evaluate the integral \( \int \frac{\sqrt{x}-3 x^{2}}{4 x^{3}} \mathrm{~d} x \), first, simplify the integrand: 1. Rewrite \( \sqrt{x} \) as \( x^{1/2} \). 2. The original expression becomes \( \int \frac{x^{1/2} - 3x^2}{4x^3} \, dx \). 3. Split into separate fractions: \[ \int \left( \frac{x^{1/2}}{4x^{3}} - \frac{3x^{2}}{4x^{3}} \right) dx = \int \left( \frac{1}{4}x^{-5/2} - \frac{3}{4}x^{-1} \right) dx \] 4. Now, integrate each term separately: \[ \int \frac{1}{4} x^{-5/2} \, dx = \frac{1}{4} \cdot \frac{x^{-3/2}}{-3/2} = -\frac{1}{6} x^{-3/2} \] \[ \int -\frac{3}{4} x^{-1} \, dx = -\frac{3}{4} \ln |x| \] 5. Combining these results gives: \[ -\frac{1}{6} x^{-3/2} - \frac{3}{4} \ln |x| + C \] Thus, the final answer is: \[ \int \frac{\sqrt{x}-3 x^{2}}{4 x^{3}} \mathrm{~d} x = -\frac{1}{6} x^{-3/2} - \frac{3}{4} \ln |x| + C \]