Pregunta
upstudy study bank question image url

Ask by Whittaker Powers. in South Africa
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral of with respect to is , where is the constant of integration.

Solución

We start with the integral
Step 1. Factor the denominator
Notice that
Thus, the integrand becomes
Step 2. Partial Fractions Decomposition
We set
Multiply both sides by to clear the denominators:
Expand the right side:
Group like terms:
Now, equate the coefficients from both sides:
  • Coefficient of : .
  • Coefficient of : .
  • Constant term: .
From , we have . Then, using :
Thus, the decomposition is
Step 3. Integrate Term by Term
The integral becomes
Integrate each term separately:
Step 4. Combine the Results
Thus, the antiderivative is
where is the constant of integration.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Sparks and dust generated by grinding can pose significant hazards in many industrial settings. When metals and other materials are subjected to grinding, not only are sparks produced due to the friction, but fine metallic dust can also be released into the air. This dust can be combustible, leading to potential fire or explosion risks, especially if it settles on surfaces or accumulates in confined spaces. It’s not just about keeping the workshop tidy; serious safety measures need to be in place to handle these byproducts effectively.
Now, let’s dive into the integral! To solve , we can start by simplifying the integrand. Factoring the denominator gives us , thus rewriting the expression as . You can separate this into partial fractions to make the integration process smoother. This will help us break it down into simpler components to integrate and finally arrive at the solution!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad