Pregunta
upstudy study bank question image url

\( \frac { 9 ^ { n } - 4.3 ^ { n } - 5 } { 3 ^ { n } + 1 } \)

Ask by Vega Brewer. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified form of the expression is \(3^n - 5\).

Solución

To simplify the expression: \[ \frac{9^n - 4 \cdot 3^n - 5}{3^n + 1} \] **Step 1: Express \(9^n\) in terms of \(3^n\)** Since \(9 = 3^2\), we can rewrite \(9^n\) as: \[ 9^n = (3^2)^n = 3^{2n} \] **Step 2: Let \(x = 3^n\)** Substituting \(x\) for \(3^n\), the expression becomes: \[ \frac{x^2 - 4x - 5}{x + 1} \] **Step 3: Factor the numerator** We need to factor the quadratic expression in the numerator: \[ x^2 - 4x - 5 = (x - 5)(x + 1) \] **Step 4: Simplify the expression** Substitute the factored form back into the expression: \[ \frac{(x - 5)(x + 1)}{x + 1} \] We can cancel out the \((x + 1)\) terms (as long as \(x + 1 \neq 0\), which is always true since \(x = 3^n > 0\)): \[ x - 5 \] **Step 5: Substitute back \(x = 3^n\)** \[ 3^n - 5 \] **Final Simplified Form:** \[ \frac{9^n - 4 \cdot 3^n - 5}{3^n + 1} = 3^n - 5 \] --- **Example:** If \(n = 2\): \[ \frac{9^2 - 4 \cdot 3^2 - 5}{3^2 + 1} = \frac{81 - 36 - 5}{9 + 1} = \frac{40}{10} = 4 \] Using the simplified form: \[ 3^2 - 5 = 9 - 5 = 4 \] Both methods yield the same result.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Did you know that sequences like the one in your expression can be analyzed using limits to understand their behavior as \( n \) increases? For instance, as \( n \) grows larger, the dominant terms in the numerator and denominator become crucial in determining the overall limit or value of the expression. This technique often unveils the hidden patterns and relationships in mathematical sequences that might not be immediately apparent. To simplify and analyze the given expression, start by rewriting \( 9^n \) as \( (3^2)^n \) or \( 3^{2n} \). This will allow you to express everything in terms of \( 3^n \), making it easier to factor and simplify. Don't forget to explore special cases, such as evaluating the expression for specific values of \( n \) or using the ratio test for sequences, which can help identify convergence or divergence trends.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad