As \( x \) approaches infinity, which functions \( f(x) \) also approach infinity? Please select three correct answers. Select all that apply: \( \square f(x)=0.4(x+3)(x-5)(2 x-7) \) \( \square f(x)=-6 x(x-1)(x+5)(x+1) \) \( \square f(x)=-3 x(x+7)(x-9) \) \( \square f(x)=0.7(2 x-3)(3 x+5) \) \( \square f(x)=(2 x+8)(x-2)(x+9) \) \( \square f(x)=-2.6(x+8)(x-9)(x+1) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To determine which functions \( f(x) \) approach infinity as \( x \) approaches infinity, we observe the behavior of the leading terms in each polynomial. The key is to identify whether the leading coefficient is positive or negative, as positive leading coefficients will lead the function towards infinity. 1. The functions \( f(x)=0.4(x+3)(x-5)(2x-7) \) and \( f(x)=0.7(2x-3)(3x+5) \) exhibit positive leading coefficients, which means they will approach infinity as \( x \) increases toward infinity. 2. In contrast, the other candidates all have negative leading coefficients. For example, \( f(x)=-6x(x-1)(x+5)(x+1) \), \( f(x)=-3x(x+7)(x-9) \), and \( f(x)=-2.6(x+8)(x-9)(x+1) \). These will approach negative infinity as \( x \) approaches infinity. So, the correct answers that approach infinity are: 1. \( \square f(x) = 0.4(x+3)(x-5)(2x-7) \) 2. \( \square f(x) = 0.7(2x-3)(3x+5) \) 3. \( \square f(x) = (2x+8)(x-2)(x+9) \) All three of these last functions have positive leading terms and approach infinity.