Responder
Equivalent fractions to \( \frac{6}{10} \) include \( \frac{3}{5} \), \( \frac{12}{20} \), \( \frac{18}{30} \), \( \frac{24}{40} \), \( \frac{30}{50} \), \( \frac{36}{60} \), \( \frac{42}{70} \), \( \frac{48}{80} \), \( \frac{54}{90} \), and \( \frac{60}{100} \).
Solución
Fractions equivalent to \( \frac{6}{10} \) are those that represent the same value when simplified or scaled by multiplying both the numerator and the denominator by the same non-zero integer. Here are several examples:
1. **Simplified Form:**
\[
\frac{6}{10} = \frac{3}{5}
\]
(Both numerator and denominator are divided by 2.)
2. **Multiples:**
\[
\frac{6 \times 2}{10 \times 2} = \frac{12}{20}
\]
\[
\frac{6 \times 3}{10 \times 3} = \frac{18}{30}
\]
\[
\frac{6 \times 4}{10 \times 4} = \frac{24}{40}
\]
\[
\frac{6 \times 5}{10 \times 5} = \frac{30}{50}
\]
\[
\frac{6 \times 6}{10 \times 6} = \frac{36}{60}
\]
\[
\frac{6 \times 7}{10 \times 7} = \frac{42}{70}
\]
\[
\frac{6 \times 8}{10 \times 8} = \frac{48}{80}
\]
\[
\frac{6 \times 9}{10 \times 9} = \frac{54}{90}
\]
\[
\frac{6 \times 10}{10 \times 10} = \frac{60}{100}
\]
3. **Negative Equivalents:**
\[
\frac{-6}{-10} = \frac{6}{10} = \frac{3}{5}
\]
4. **Non-Integer Multiples (for completeness):**
While less common in basic fractions, you can also have equivalent fractions by using fractions to multiply:
\[
\frac{6 \times \frac{1}{2}}{10 \times \frac{1}{2}} = \frac{3}{5}
\]
\[
\frac{6 \times \frac{3}{2}}{10 \times \frac{3}{2}} = \frac{9}{15}
\]
**General Rule:**
To find equivalent fractions, multiply or divide both the numerator and the denominator by the same non-zero integer. This maintains the value of the fraction while changing its appearance.
**Summary of Examples:**
- \( \frac{3}{5} \)
- \( \frac{12}{20} \)
- \( \frac{18}{30} \)
- \( \frac{24}{40} \)
- \( \frac{30}{50} \)
- \( \frac{36}{60} \)
- \( \frac{42}{70} \)
- \( \frac{48}{80} \)
- \( \frac{54}{90} \)
- \( \frac{60}{100} \)
- \( \frac{-6}{-10} \)
These are just a few examples; there are infinitely many fractions equivalent to \( \frac{6}{10} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución