b) \( \left(\frac{1}{9} m^{5}\right)^{2}\left(\frac{1}{4} m^{7}\right)^{3} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
First, let's simplify the expression step by step. For the first part, \( \left(\frac{1}{9} m^{5}\right)^{2} \) can be simplified to \( \frac{1}{9^2} m^{10} = \frac{1}{81} m^{10} \). Next, for the second part, \( \left(\frac{1}{4} m^{7}\right)^{3} \) simplifies to \( \frac{1}{4^3} m^{21} = \frac{1}{64} m^{21} \). Now we can multiply the two results together: \[ \frac{1}{81} m^{10} \cdot \frac{1}{64} m^{21} = \frac{1}{81 \cdot 64} m^{10 + 21} \] Calculating \( 81 \cdot 64 = 5184 \) gives us: \[ \frac{1}{5184} m^{31} \] So, the final simplified expression is: \[ \frac{1}{5184} m^{31} \]