(i) Express \( -2 x^{2}-10 x-3 \) in the form \( a(x-h)^{2}+k \).
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To express \( -2x^{2} - 10x - 3 \) in the form \( a(x-h)^{2} + k \), we start by factoring out the coefficient of \( x^{2} \) from the first two terms: \[ -2(x^{2} + 5x) - 3 \] Next, we complete the square inside the parentheses. We take half of the coefficient of \( x \) (which is \( 5 \)), square it (creating \( \frac{25}{4} \)), and adjust our expression accordingly: \[ -2\left(x^{2} + 5x + \frac{25}{4} - \frac{25}{4}\right) - 3 \] This transforms to: \[ -2\left(\left(x + \frac{5}{2}\right)^{2} - \frac{25}{4}\right) - 3 \] Distributing the \( -2 \): \[ -2\left(x + \frac{5}{2}\right)^{2} + \frac{50}{4} - 3 = -2\left(x + \frac{5}{2}\right)^{2} + \frac{50}{4} - \frac{12}{4} \] Simplifying: \[ -2\left(x + \frac{5}{2}\right)^{2} + \frac{38}{4} = -2\left(x + \frac{5}{2}\right)^{2} + \frac{19}{2} \] Thus, the expression in the desired form is: \[ -2\left(x + \frac{5}{2}\right)^{2} + \frac{19}{2} \]