Pregunta
Example 1: Given quadratic sequence is defined as \( T_{k}=\sum_{n=0}^{k-1}(6 n-2) \) 1. Show that the first 3 terms of the quadratic sequence are given by: \( -2 ; 2 ; 12 ; \ldots \ldots \)
Ask by Mckenzie Perkins. in South Africa
Jan 25,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The first three terms of the sequence are -2, 2, and 12.
Solución
To demonstrate that the first three terms of the quadratic sequence defined by \( T_{k} = \sum_{n=0}^{k-1} (6n - 2) \) are \(-2\), \(2\), and \(12\), we'll calculate each term individually by evaluating the sum for \( k = 1 \), \( k = 2 \), and \( k = 3 \).
### Calculating \( T_1 \)
For \( k = 1 \):
\[
T_1 = \sum_{n=0}^{0} (6n - 2)
\]
Since the upper limit is \( n = 0 \), the sum includes only one term (\( n = 0 \)):
\[
T_1 = 6(0) - 2 = 0 - 2 = -2
\]
### Calculating \( T_2 \)
For \( k = 2 \):
\[
T_2 = \sum_{n=0}^{1} (6n - 2)
\]
This sum includes two terms (\( n = 0 \) and \( n = 1 \)):
\[
\begin{align*}
T_2 &= (6(0) - 2) + (6(1) - 2) \\
&= -2 + (6 - 2) \\
&= -2 + 4 \\
&= 2
\end{align*}
\]
### Calculating \( T_3 \)
For \( k = 3 \):
\[
T_3 = \sum_{n=0}^{2} (6n - 2)
\]
This sum includes three terms (\( n = 0 \), \( n = 1 \), and \( n = 2 \)):
\[
\begin{align*}
T_3 &= (6(0) - 2) + (6(1) - 2) + (6(2) - 2) \\
&= -2 + 4 + (12 - 2) \\
&= -2 + 4 + 10 \\
&= 12
\end{align*}
\]
### Summary of the First Three Terms
\[
T_1 = -2 \\
T_2 = 2 \\
T_3 = 12 \\
\]
Thus, the first three terms of the quadratic sequence are \(-2\), \(2\), and \(12\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To find the first three terms of the quadratic sequence defined by \( T_{k}=\sum_{n=0}^{k-1}(6 n-2) \), we calculate \( T_1 \), \( T_2 \), and \( T_3 \). For \( T_1 \): \[ T_1 = \sum_{n=0}^{0}(6n-2) = 6(0) - 2 = -2 \] For \( T_2 \): \[ T_2 = \sum_{n=0}^{1}(6n-2) = (6(0)-2) + (6(1)-2) = -2 + 4 = 2 \] For \( T_3 \): \[ T_3 = \sum_{n=0}^{2}(6n-2) = (6(0)-2) + (6(1)-2) + (6(2)-2) = -2 + 4 + 10 = 12 \] Thus, the first three terms of the sequence are indeed \( -2, 2, 12 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium