Pregunta
upstudy study bank question image url

If a seed is planted, it has a \( 60 \% \) chance of growing into a healthy plant. If 12 seeds are planted, what is the probability that exactly 1 doesn't grow?

Ask by Graham Huang. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that exactly 1 out of 12 seeds doesn't grow is approximately 1.74%.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

To find the probability that exactly 1 out of 12 seeds does not grow, we can model this scenario using the binomial probability formula. In this case, the probability of a seed growing is \( p = 0.6 \) and the probability of a seed not growing is \( q = 0.4 \). We want the probability of exactly \( k = 1 \) seed not growing out of \( n = 12 \) seeds planted: \[ P(X = k) = \binom{n}{k} p^{n-k} q^k \] Here, \( k = 1 \) (1 seed not growing), \( n = 12 \), \( p = 0.6 \), and \( q = 0.4 \). 1. First, calculate \( \binom{12}{1} = 12 \). 2. Then find \( p^{n-k} = (0.6)^{11} \) and \( q^k = (0.4)^{1} \). Now, putting it all together: \[ P(X = 1) = \binom{12}{1} (0.6)^{11} (0.4)^{1} \] Calculating \( (0.6)^{11} \) gives approximately \( 0.0367 \) and \( (0.4)^{1} \) is \( 0.4 \). So: \[ P(X = 1) = 12 \times 0.0367 \times 0.4 \approx 0.176 \, (rounded \, to \, three \, decimal \, places) \] Thus, the probability that exactly 1 out of 12 seeds does not grow is approximately \( 0.176 \).

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad