student.freckle.com Login - Ga Login - Ga... Calendar \( x y- \) Goog... Start Page by Renaiss... Student D... NUMBER SYSTEM - 3/10 Point \( A \) is located at \( (2,3) \). Point \( B \) is located at \( \left(2,-2 \frac{1}{2}\right) \). What is the distance You can earn 5 coins \( 4 \frac{1}{2} \) units \( 5 \frac{1}{2} \) units 2 units \( 6 \frac{1}{2} \) units
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the distance between two points in a coordinate plane, you can use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] For points \( A(2, 3) \) and \( B\left(2, -2 \frac{1}{2}\right) \): Here, \( x_1 = 2, y_1 = 3, x_2 = 2, y_2 = -2.5 \). Plugging in these values, you’ll find that the distance \( d \) simplifies to \( 5.5 \) units, which corresponds to the answer \( 5 \frac{1}{2} \) units! The distance formula is a rockstar in mathematics because it not only calculates separation between points but also can be essential in various fields. Wanting to measure lengths in navigation, engineering, or even when drawing geometric shapes? This formula shows its versatility time and again, bridging the gap in our understanding of space and dimensions!