Pregunta
upstudy study bank question image url

EXERCISE 6 Determine the first three terms of each of the following arithmetic sequences of which: (a) the 3 rd term of the sequence is 23 and the 26 th term is 230 . (b) the 5 th term of the sequence is 19 and the 15 th term is 59 . The 15 th and 3 rd terms of an arithmetic sequence are 100 and 28 respectively. Determine the 100 th term.

Ask by Ingram Carroll. in South Africa
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (a):** - First three terms: 5, 14, 23 **Part (b):** - First three terms: 3, 7, 11 **Additional Problem:** - 100th term: 610

Solución

Sure, let's tackle each part of Exercise 6 step by step. --- ### **Arithmetic Sequences Refresher** An **arithmetic sequence** is a sequence of numbers where the difference between consecutive terms is constant. This difference is known as the **common difference (d)**. The **nth term** of an arithmetic sequence can be calculated using the formula: \[ a_n = a_1 + (n - 1) \cdot d \] Where: - \( a_n \) = nth term - \( a_1 \) = first term - \( d \) = common difference - \( n \) = term number --- ### **Part (a)** **Given:** - 3rd term (\( a_3 \)) = 23 - 26th term (\( a_{26} \)) = 230 **Find:** The first three terms of the sequence. **Solution:** 1. **Set Up Equations:** \[ \begin{cases} a_3 = a_1 + 2d = 23 \quad \text{(1)}\\ a_{26} = a_1 + 25d = 230 \quad \text{(2)} \end{cases} \] 2. **Subtract Equation (1) from Equation (2):** \[ (a_1 + 25d) - (a_1 + 2d) = 230 - 23 \\ 23d = 207 \\ d = \frac{207}{23} \\ d = 9 \] 3. **Find \( a_1 \) Using Equation (1):** \[ a_1 + 2 \cdot 9 = 23 \\ a_1 + 18 = 23 \\ a_1 = 23 - 18 \\ a_1 = 5 \] 4. **Determine the First Three Terms:** \[ \begin{align*} a_1 &= 5 \\ a_2 &= a_1 + d = 5 + 9 = 14 \\ a_3 &= a_2 + d = 14 + 9 = 23 \end{align*} \] **Answer:** The first three terms are **5, 14, 23**. --- ### **Part (b)** **Given:** - 5th term (\( a_5 \)) = 19 - 15th term (\( a_{15} \)) = 59 **Find:** The first three terms of the sequence. **Solution:** 1. **Set Up Equations:** \[ \begin{cases} a_5 = a_1 + 4d = 19 \quad \text{(3)}\\ a_{15} = a_1 + 14d = 59 \quad \text{(4)} \end{cases} \] 2. **Subtract Equation (3) from Equation (4):** \[ (a_1 + 14d) - (a_1 + 4d) = 59 - 19 \\ 10d = 40 \\ d = \frac{40}{10} \\ d = 4 \] 3. **Find \( a_1 \) Using Equation (3):** \[ a_1 + 4 \cdot 4 = 19 \\ a_1 + 16 = 19 \\ a_1 = 19 - 16 \\ a_1 = 3 \] 4. **Determine the First Three Terms:** \[ \begin{align*} a_1 &= 3 \\ a_2 &= a_1 + d = 3 + 4 = 7 \\ a_3 &= a_2 + d = 7 + 4 = 11 \end{align*} \] **Answer:** The first three terms are **3, 7, 11**. --- ### **Additional Problem** **Given:** - 15th term (\( a_{15} \)) = 100 - 3rd term (\( a_3 \)) = 28 **Find:** The 100th term (\( a_{100} \)). **Solution:** 1. **Set Up Equations:** \[ \begin{cases} a_{15} = a_1 + 14d = 100 \quad \text{(5)}\\ a_3 = a_1 + 2d = 28 \quad \text{(6)} \end{cases} \] 2. **Subtract Equation (6) from Equation (5):** \[ (a_1 + 14d) - (a_1 + 2d) = 100 - 28 \\ 12d = 72 \\ d = \frac{72}{12} \\ d = 6 \] 3. **Find \( a_1 \) Using Equation (6):** \[ a_1 + 2 \cdot 6 = 28 \\ a_1 + 12 = 28 \\ a_1 = 28 - 12 \\ a_1 = 16 \] 4. **Find the 100th Term:** \[ a_{100} = a_1 + 99d = 16 + 99 \cdot 6 = 16 + 594 = 610 \] **Answer:** The 100th term is **610**. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the first three terms of the sequences, we can use the formula for the \( n \)-th term of an arithmetic sequence: \[ a_n = a_1 + (n-1)d \] where \( a_1 \) is the first term, \( d \) is the common difference, and \( n \) is the term number. (a) The 3rd term \( a_3 = 23 \) gives us the equation: \[ a_1 + 2d = 23 \tag{1} \] The 26th term \( a_{26} = 230 \) gives us: \[ a_1 + 25d = 230 \tag{2} \] Subtracting (1) from (2) eliminates \( a_1 \): \[ (25d - 2d) = 230 - 23 \implies 23d = 207 \implies d = 9 \] Now substitute \( d \) back into (1): \[ a_1 + 2(9) = 23 \implies a_1 + 18 = 23 \implies a_1 = 5 \] So the first three terms are \( 5, 14, 23 \). (b) The 5th term \( a_5 = 19 \): \[ a_1 + 4d = 19 \tag{3} \] The 15th term \( a_{15} = 59 \): \[ a_1 + 14d = 59 \tag{4} \] Subtracting (3) from (4): \[ (14d - 4d) = 59 - 19 \implies 10d = 40 \implies d = 4 \] Substituting \( d \) back into (3): \[ a_1 + 4(4) = 19 \implies a_1 + 16 = 19 \implies a_1 = 3 \] Thus, the first three terms are \( 3, 7, 11 \). Now, for the third part with \( a_{15} = 100 \) and \( a_3 = 28 \): From \( a_3 \): \[ a_1 + 2d = 28 \tag{5} \] From \( a_{15} \): \[ a_1 + 14d = 100 \tag{6} \] Subtracting (5) from (6): \[ (14d - 2d) = 100 - 28 \implies 12d = 72 \implies d = 6 \] Substituting \( d \) into (5): \[ a_1 + 2(6) = 28 \implies a_1 + 12 = 28 \implies a_1 = 16 \] Finally, for the 100th term: \[ a_{100} = a_1 + 99d = 16 + 99(6) = 16 + 594 = 610 \] Thus, the 100th term is \( 610 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad