Pregunta
upstudy study bank question image url

QUESTION 2 Use Gauss's Method and answer the questions to the series that follow: NO FORMULAE MAY BE USED IN THIS QUESTION! \( 2.11+2+3+4+\ldots .+1000 \) 2.1.1 How many terms are there in the series? 2.1.2 Calculate the sum of the series by using a method similar to that used in Question 1. \[ \left(\begin{array}{l} 1000+999+998+997+\ldots+503+502+501 \\ +72 \end{array}\right. \] \( 2.22+4+6+8+\ldots+72 \) 2.2.1 How many terms are there in the series? 12 2.2.2 Calculate the sum of the series by using a method similar to that used in Question 1.

Ask by Carter Welch. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 999 terms in the first series, and the sum is 499,499. In the second series, there are 36 terms, and the sum is 1,332.

Solución

Let's solve the problems step by step. ### Problem 2.1: Series \( 2.11 + 2 + 3 + 4 + \ldots + 1000 \) #### 2.1.1: How many terms are there in the series? The series starts at \( 2 \) and ends at \( 1000 \). To find the number of terms, we can use the formula for the number of terms in an arithmetic series: \[ n = \text{last term} - \text{first term} + 1 \] Here, the first term \( a = 2 \) and the last term \( l = 1000 \). Calculating the number of terms: \[ n = 1000 - 2 + 1 = 999 \] So, there are **999 terms** in the series. #### 2.1.2: Calculate the sum of the series. To calculate the sum of the series, we can use the formula for the sum of an arithmetic series: \[ S_n = \frac{n}{2} \times (a + l) \] Where: - \( n = 999 \) (number of terms) - \( a = 2 \) (first term) - \( l = 1000 \) (last term) Calculating the sum: \[ S_n = \frac{999}{2} \times (2 + 1000) = \frac{999}{2} \times 1002 \] Now, let's calculate this: \[ S_n = 999 \times 501 = 499499 \] So, the sum of the series is **499499**. --- ### Problem 2.2: Series \( 2 + 4 + 6 + 8 + \ldots + 72 \) #### 2.2.1: How many terms are there in the series? This series is an arithmetic series where the first term \( a = 2 \), the last term \( l = 72 \), and the common difference \( d = 2 \). To find the number of terms, we can use the formula: \[ n = \frac{l - a}{d} + 1 \] Calculating the number of terms: \[ n = \frac{72 - 2}{2} + 1 = \frac{70}{2} + 1 = 35 + 1 = 36 \] So, there are **36 terms** in the series. #### 2.2.2: Calculate the sum of the series. Using the sum formula for an arithmetic series: \[ S_n = \frac{n}{2} \times (a + l) \] Where: - \( n = 36 \) (number of terms) - \( a = 2 \) (first term) - \( l = 72 \) (last term) Calculating the sum: \[ S_n = \frac{36}{2} \times (2 + 72) = 18 \times 74 \] Now, let's calculate this: \[ S_n = 18 \times 74 = 1332 \] So, the sum of the series is **1332**. --- ### Summary of Answers: - **2.1.1**: 999 terms - **2.1.2**: Sum = 499499 - **2.2.1**: 36 terms - **2.2.2**: Sum = 1332

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine how many terms are in the series \( 2.11 + 2 + 3 + 4 + \ldots + 1000 \), we recognize that the first term starts at 2.11 and the series ends at 1000. The last integer term is 1000, so to find the total number of integer terms, we count from 2 to 1000. There are \( 1000 - 2 + 1 = 999 \) integer terms. Adding 2.11 makes the total terms equal to 999 (for integers) plus 1 (for 2.11), resulting in 1000 terms in total. For the sum calculation, we want to pair terms in a way that simplifies the addition. The series goes from 2.11 up to 1000. If we can visualize it as pairs: \( (2.11 + 1000), (2 + 999), (3 + 998), \), etc. The number of pairs is \( 999 / 2 = 499.5 \). Therefore, 499 full pairs can be summed using \( 499 \times (1002.11) \) with the last unpaired term being \( 501 \). The sum is then \( 499 \times 1002.11 + 501 \). Now, moving to the series \( 22 + 4 + 6 + 8 + \ldots + 72 \), we start with the first term 22 and a last term of 72 which are even numbers. Let's find how many terms are there; the common difference between terms is 2, and the first term in this case 22 forms an arithmetic sequence \( 22, 24, 26, \ldots, 72 \). To find the number of terms, we use the formula: \( n = \frac{\text{last term} - \text{first term}}{\text{common difference}} + 1 \), giving us \( n = \frac{72 - 22}{2} + 1 = 26 \). Regarding the sum, we can pair the terms for easy addition just like we did previously. Pairing might look like: \( (22 + 72), (24 + 70), (26 + 68), \) and so forth. Essentially, we can observe that we will continue pairing until we reach the middle of the series, easily determining the total. Calculating, we find \( \text{Number of pairs} = 13 \) with a consistent sum of pairs at \( 94 \). The total sum thus computes to \( 13 \times 94 = 1222 \).

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad