Pregunta
upstudy study bank question image url

Walk me through your steps for solving this equation for " \( x \) ": \( 2(3 x-7)+4(3 x+2) \) \( =6(5 x+9)+3 \). I want words explaining what you are doing. You can solve it step by step first and then write it out in words next to each step to explain what you did. Use words/phrases like "distribute," "combine like terms," "use addition property to move _to the other side," etc...

Ask by Osborne Salazar. in the United States
Jan 30,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Solve the equation \(2(3x-7)+4(3x+2) = 6(5x+9)+3\). The solution is \(x = -\frac{21}{4}\) or \(x = -5.25\).

Solución

Solve the equation \( 2(3x-7)+4(3x+2) = 6(5x+9)+3 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2\left(3x-7\right)+4\left(3x+2\right)=6\left(5x+9\right)+3\) - step1: Move the expression to the left side: \(2\left(3x-7\right)+4\left(3x+2\right)-\left(6\left(5x+9\right)+3\right)=0\) - step2: Remove the parentheses: \(2\left(3x-7\right)+4\left(3x+2\right)-6\left(5x+9\right)-3=0\) - step3: Calculate: \(-12x-63=0\) - step4: Move the constant to the right side: \(-12x=0+63\) - step5: Remove 0: \(-12x=63\) - step6: Change the signs: \(12x=-63\) - step7: Divide both sides: \(\frac{12x}{12}=\frac{-63}{12}\) - step8: Divide the numbers: \(x=-\frac{21}{4}\) The solution to the equation \(2(3x-7)+4(3x+2) = 6(5x+9)+3\) is \(x = -\frac{21}{4}\) or \(x = -5.25\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

First, let's start off by distributing the terms in the equation: 1. Distribute \( 2 \) across \( (3x - 7) \): \( 2 \times 3x - 2 \times 7 = 6x - 14 \). 2. Distribute \( 4 \) across \( (3x + 2) \): \( 4 \times 3x + 4 \times 2 = 12x + 8 \). 3. Distribute \( 6 \) across \( (5x + 9) \): \( 6 \times 5x + 6 \times 9 = 30x + 54 \). Now let's put all of that into the original equation, transforming it step by step: **Equation:** \( 6x - 14 + 12x + 8 = 30x + 54 + 3 \) 4. Combine like terms on the left side: \( (6x + 12x) + (-14 + 8) = 18x - 6 \). 5. Combine like terms on the right side: \( 30x + (54 + 3) = 30x + 57 \). Now our simplified equation looks like this: **New Equation:** \( 18x - 6 = 30x + 57 \) 6. Now, use the addition property to move \( 6 \) to the right side: \( 18x = 30x + 57 + 6 \). 7. Simplifying gives us: \( 18x = 30x + 63 \). 8. Next, use the addition property to move \( 30x \) to the left side: \( 18x - 30x = 63 \). 9. This simplifies to: \( -12x = 63 \). 10. Finally, divide by \( -12 \): \( x = \frac{63}{-12} = -\frac{21}{4} \). So, your solution for \( x \) is \( -\frac{21}{4} \). Now, let’s break it down into simple words: We started by distributing the numbers outside the parentheses to each term within the parentheses to eliminate them. After that, we combined like terms, which means adding together similar components on both sides of the equation. Then came using the addition property to effectively 'move' terms from one side to the other for more straightforward calculations. Finally, we isolated \( x \) by performing operations to get \( x \) on its own, resulting in the solution. It’s like rearranging a puzzle to find the missing piece!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad