Pregunta
upstudy study bank question image url

The 6th term of an arithmetic sequence is \( x \) while the 11 th term is \( y \). find the Ist 2 terms.

Ask by Wells Gordon. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The first term is \( 2x - y \) and the second term is \( \frac{9x - 4y}{5} \).

Solución

To determine the first two terms of the arithmetic sequence given that the 6th term is \( x \) and the 11th term is \( y \), let's follow these steps: ### 1. Understanding the Arithmetic Sequence An arithmetic sequence is defined by its first term \( a \) and a common difference \( d \) between consecutive terms. The \( n \)-th term of an arithmetic sequence can be expressed as: \[ a_n = a + (n - 1)d \] ### 2. Setting Up the Equations Given: - The 6th term (\( a_6 \)) is \( x \): \[ a + 5d = x \quad \text{(1)} \] - The 11th term (\( a_{11} \)) is \( y \): \[ a + 10d = y \quad \text{(2)} \] ### 3. Solving for the Common Difference \( d \) Subtract equation (1) from equation (2): \[ (a + 10d) - (a + 5d) = y - x \\ 5d = y - x \\ d = \frac{y - x}{5} \] ### 4. Solving for the First Term \( a \) Substitute \( d \) back into equation (1): \[ a + 5\left(\frac{y - x}{5}\right) = x \\ a + (y - x) = x \\ a = x - (y - x) \\ a = 2x - y \] ### 5. Determining the Second Term The second term of the sequence is: \[ a_2 = a + d = (2x - y) + \frac{y - x}{5} \] Simplify: \[ a_2 = \frac{10x - 5y + y - x}{5} = \frac{9x - 4y}{5} \] ### **Final Answer** - **First Term (\( a \))**: \( 2x - y \) - **Second Term (\( a_2 \))**: \( \frac{9x - 4y}{5} \) --- **Example:** If \( x = 15 \) and \( y = 30 \): - First Term: \( 2(15) - 30 = 0 \) - Second Term: \( \frac{9(15) - 4(30)}{5} = \frac{135 - 120}{5} = 3 \) Thus, the first two terms would be \( 0 \) and \( 3 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the first two terms of the arithmetic sequence, we can use the formulas for the nth term of an arithmetic sequence, which is given by: \[ a_n = a + (n - 1)d \] where \( a \) is the first term, \( d \) is the common difference, and \( n \) is the term number. For the 6th term, we have: \[ a_6 = a + 5d = x \] For the 11th term, we have: \[ a_{11} = a + 10d = y \] Now, we can set up the following equations: 1. \( a + 5d = x \) (1) 2. \( a + 10d = y \) (2) Subtract equation (1) from equation (2) to eliminate \( a \): \[ (a + 10d) - (a + 5d) = y - x \] \[ 5d = y - x \] \[ d = \frac{y - x}{5} \] Now substitute \( d \) back into equation (1) to find \( a \): \[ a + 5\left(\frac{y - x}{5}\right) = x \] \[ a + (y - x) = x \] \[ a = x - (y - x) \] \[ a = 2x - y \] Thus, the first term is \( a = 2x - y \). The second term \( a_2 \) can be calculated as: \[ a_2 = a + d = (2x - y) + \frac{y - x}{5} \] Combining these, we can express \( a_2 \): \[ a_2 = 2x - y + \frac{y - x}{5} = 2x - y + \frac{y}{5} - \frac{x}{5} \] \[ = \frac{10x - 5y + y - x}{5} = \frac{9x - 4y}{5} \] Therefore, the first two terms of the arithmetic sequence are: 1. First term: \( 2x - y \) 2. Second term: \( \frac{9x - 4y}{5} \)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad