Pregunta
In Exercises 15-22, determine whether the segment
lengths form a triangle. If so, is the triangle acute, right,
or obtuse? (See Example 5.)
15. 10,11 , and 14
16. 6,8 , and 14
17. 12,16 , and 20
18. 15,20 , and 26
19.
, and 12.4
20.
, and 7.8
21. 24,30 , and
22. 10,15 , and
lengths form a triangle. If so, is the triangle acute, right,
or obtuse? (See Example 5.)
15. 10,11 , and 14
16. 6,8 , and 14
17. 12,16 , and 20
18. 15,20 , and 26
19.
20.
21. 24,30 , and
22. 10,15 , and
Ask by Harris Burgess. in the United States
Mar 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
- 15: Triangle (Acute)
- 16: No triangle
- 17: Triangle (Right)
- 18: Triangle (Obtuse)
- 19: No triangle
- 20: Triangle (Acute)
- 21: Triangle (Obtuse)
- 22: Triangle (Right)
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Beyond the Answer
To determine whether the given segments can form a triangle, we can use the triangle inequality theorem, which states that for any three lengths
,
, and
, the following must be true:
,
, and
. Now, let’s analyze the segments provided:
-
10, 11, and 14: Yes, they can form a triangle. All the triangle inequalities hold true, and since
, it is obtuse. -
6, 8, and 14: No, they cannot form a triangle since
is not greater than . -
12, 16, and 20: Yes, they form a triangle. All inequalities are satisfied, and since
, it is a right triangle. -
15, 20, and 26: Yes, they can form a triangle. The inequalities are satisfied, and since
, it is obtuse. -
4.1, 8.2, and 12.4: Yes, they can form a triangle. The inequalities hold true, and since
, it is obtuse. -
5.3, 6.7, and 7.8: Yes, they form a triangle as all inequalities are satisfied, and since
, it is acute. -
24, 30, and
: Yes, they can form a triangle. All inequalities are satisfied, and upon evaluating, since , it is obtuse. -
10, 15, and
: Yes, they form a triangle. The inequalities hold true, and since , it is acute.
Remember to always check the triangle inequalities first to confirm that a triangle can exist with the given lengths before determining its type!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium