Pregunta
upstudy study bank question image url

Current rules for telephone area codes allow the use of digits \( 2-9 \) for the first digit, and \( 0-9 \) for the second and third digits, but the last two digits as 911 . How many different area codes are possible with these rules? That same rule applies to the exchange numbers, which are the three Given both of those rules, how many 10 -digit phone numbers are possible? Given that these rules apply to the United States and Canada and (Assume that the combined population is about \( 400,000,000 \).) How many possible area codes are there? (Type a whole number.)

Ask by Chadwick Gibbs. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are 792 possible area codes.

Solución

To determine the number of possible area codes under the specified rules, let's break down the constraints: 1. **First Digit (N):** Must be between 2 and 9 (inclusive). This gives **8** possible choices. 2. **Second and Third Digits (X and X):** Each can be any digit from 0 to 9. This provides **10** choices for each digit. 3. **Exclusion of N11 Codes:** Area codes like 211, 311, ..., 911 (where the last two digits are "11") are typically reserved for special services and are **not** available for standard area codes. There are **8** such excluded combinations (one for each possible first digit from 2 to 9). **Calculation:** - **Total Possible Combinations Without Exclusions:** \[ 8 \text{ (choices for N)} \times 10 \text{ (choices for first X)} \times 10 \text{ (choices for second X)} = 800 \] - **Subtracting the Excluded N11 Codes:** \[ 800 - 8 = 792 \] **Final Answer:** 792

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve how many different area codes are possible with the given rules, let's break down the rules: 1. The first digit of the area code can be any digit from 2 to 9. This gives us 8 options (2, 3, 4, 5, 6, 7, 8, 9). 2. The second and third digits can be any digit from 0 to 9, giving us 10 options for each. Now we can calculate the total number of area codes: - Options for the first digit: 8 - Options for the second digit: 10 - Options for the third digit: 10 So, the total number of area codes is: \[ 8 \times 10 \times 10 = 800 \] Next, let's calculate how many 10-digit phone numbers are possible. The structure of a telephone number in the US and Canada typically follows the format NPA-NXX-XXXX, where: - NPA is the area code (3 digits) - NXX is the exchange number (3 digits) - XXXX is the subscriber number (4 digits), which can be any digit from 0 to 9. Since we already calculated the number of valid area codes as 800, and exchange numbers also follow the same rules as area codes (2-9 for the first digit and 0-9 for the next two): - Total exchange codes: \( 8 \times 10 \times 10 = 800 \) - The subscriber number (XXXX) can be any combination of 4 digits (0-9), giving \( 10 \times 10 \times 10 \times 10 = 10,000 \) possibilities. Now, we can multiply these together for the total number of 10-digit phone numbers: \[ 800 \text{ (area codes)} \times 800 \text{ (exchange numbers)} \times 10,000 \text{ (subscriber numbers)} = 6,400,000,000 \] Thus, the total number of 10-digit phone numbers possible under these rules is **6,400,000,000**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad