Pregunta
Solve for all values of \( x \) by factoring \[ x^{2}+x-12=x+4 \]
Ask by Tran Wyatt. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x = 4 \) and \( x = -4 \)
Solución
To solve the equation
\[
x^{2} + x - 12 = x + 4
\]
by factoring, follow these steps:
1. **Rearrange the Equation:**
First, bring all terms to one side to set the equation to zero:
\[
x^{2} + x - 12 - x - 4 = 0
\]
Simplifying this, we get:
\[
x^{2} - 16 = 0
\]
2. **Factor the Quadratic:**
The equation \( x^{2} - 16 = 0 \) is a difference of squares, which can be factored as:
\[
(x - 4)(x + 4) = 0
\]
3. **Find the Solutions:**
Set each factor equal to zero and solve for \( x \):
\[
x - 4 = 0 \quad \Rightarrow \quad x = 4
\]
\[
x + 4 = 0 \quad \Rightarrow \quad x = -4
\]
4. **Verify the Solutions:**
- **For \( x = 4 \):**
\[
\text{LHS} = 4^{2} + 4 - 12 = 16 + 4 - 12 = 8
\]
\[
\text{RHS} = 4 + 4 = 8
\]
Both sides are equal.
- **For \( x = -4 \):**
\[
\text{LHS} = (-4)^{2} + (-4) - 12 = 16 - 4 - 12 = 0
\]
\[
\text{RHS} = -4 + 4 = 0
\]
Both sides are equal.
Both solutions are valid.
**Final Answer:**
\[
x =\,4 \quad \text{and} \quad x =\, -4
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To solve the equation \( x^{2} + x - 12 = x + 4 \), first, we can simplify it by moving all terms to one side: \[ x^{2} + x - 12 - x - 4 = 0 \] This simplifies to: \[ x^{2} - 16 = 0 \] Next, we can factor this expression. Notice that \( x^{2} - 16 \) is a difference of squares, which can be factored as: \[ (x - 4)(x + 4) = 0 \] Now, we set each factor equal to zero to solve for \( x \): 1. \( x - 4 = 0 \) ⟹ \( x = 4 \) 2. \( x + 4 = 0 \) ⟹ \( x = -4 \) So, the solutions are: \[ \boxed{4 \text{ and } -4} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium