The point of contact \( y^{2}=4 a x \) ar the tangent \( y=m x+c \) is
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the point of contact between the parabola \( y^{2} = 4ax \) and the tangent line \( y = mx + c \), we can substitute \( y \) from the line's equation into the parabola's equation. This leads to the equation \( (mx + c)^{2} = 4ax \). Expanding and rearranging this quadratic equation can help us find the x-coordinate of the point of contact. The corresponding y-coordinate can then be easily computed using \( y = mx + c \). Once you have the point of contact, you can also explore several aspects like how the slope \( m \) impacts the angle of intersection, or how varying \( c \) affects the position of the tangent. This is a beautiful way to visualize the dynamic relationship between linear and quadratic functions!