Pregunta
upstudy study bank question image url

11. The sum of the first five terms of an arithmetic series is zero. The last term is 4 . Determine the first term and the common difference. 12. The sum of the first five terms of an arithmetic series is 5 . The fourth term exceeds the seventh by 6 . Find the sum of the first ten terms.

Ask by Dunn Whittaker. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 11:** - **First Term (\( a \))**: \(-4\) - **Common Difference (\( d \))**: \(2\) **Problem 12:** - **First Term (\( a \))**: \(5\) - **Common Difference (\( d \))**: \(-2\) - **Sum of the First Ten Terms (\( S_{10} \))**: \(-40\)

Solución

Let's solve both problems step by step. --- ### **Problem 11** **Statement:** The sum of the first five terms of an arithmetic series is zero. The last term is 4. Determine the first term and the common difference. **Solution:** Let's denote: - First term of the arithmetic series as \( a \). - Common difference as \( d \). **Step 1: Express the First Five Terms** The first five terms of the arithmetic series are: \[ a, \quad a + d, \quad a + 2d, \quad a + 3d, \quad a + 4d \] **Step 2: Sum of the First Five Terms** Given that the sum of these five terms is zero: \[ S_5 = a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) = 0 \] Simplifying: \[ 5a + 10d = 0 \] \[ 5a = -10d \] \[ a = -2d \quad \text{(Equation 1)} \] **Step 3: Last Term Condition** The last (5th) term is 4: \[ a + 4d = 4 \quad \text{(Given)} \] **Step 4: Substitute Equation 1 into Last Term Condition** \[ -2d + 4d = 4 \] \[ 2d = 4 \] \[ d = 2 \] **Step 5: Find the First Term \( a \)** Using Equation 1: \[ a = -2 \times 2 = -4 \] **Answer:** - **First Term (\( a \))**: \(-4\) - **Common Difference (\( d \))**: \(2\) --- ### **Problem 12** **Statement:** The sum of the first five terms of an arithmetic series is 5. The fourth term exceeds the seventh by 6. Find the sum of the first ten terms. **Solution:** Let's denote: - First term of the arithmetic series as \( a \). - Common difference as \( d \). **Step 1: Sum of the First Five Terms** The first five terms are: \[ a, \quad a + d, \quad a + 2d, \quad a + 3d, \quad a + 4d \] Their sum: \[ S_5 = a + (a + d) + (a + 2d) + (a + 3d) + (a + 4d) = 5a + 10d \] Given: \[ 5a + 10d = 5 \] Simplifying: \[ a + 2d = 1 \quad \text{(Equation 1)} \] **Step 2: Relationship Between the Fourth and Seventh Terms** The fourth term: \[ T_4 = a + 3d \] The seventh term: \[ T_7 = a + 6d \] Given that the fourth term exceeds the seventh by 6: \[ T_4 - T_7 = 6 \] \[ (a + 3d) - (a + 6d) = 6 \] \[ -3d = 6 \] \[ d = -2 \] **Step 3: Find the First Term \( a \)** Using Equation 1: \[ a + 2(-2) = 1 \] \[ a - 4 = 1 \] \[ a = 5 \] **Step 4: Sum of the First Ten Terms** The formula for the sum of the first \( n \) terms of an arithmetic series is: \[ S_n = \frac{n}{2} \left[2a + (n - 1)d\right] \] For \( n = 10 \): \[ S_{10} = \frac{10}{2} \left[2 \times 5 + (10 - 1)(-2)\right] \] \[ S_{10} = 5 \left[10 + 9 \times (-2)\right] \] \[ S_{10} = 5 \left[10 - 18\right] \] \[ S_{10} = 5 \times (-8) = -40 \] **Answer:** - **First Term (\( a \))**: \(5\) - **Common Difference (\( d \))**: \(-2\) - **Sum of the First Ten Terms (\( S_{10} \))**: \(-40\) --- **Summary of Answers:** 11. - **First Term**: \(-4\) - **Common Difference**: \(2\) 12. - **First Term**: \(5\) - **Common Difference**: \(-2\) - **Sum of the First Ten Terms**: \(-40\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In the first problem, since the sum of an arithmetic series is given by the formula \( S_n = \frac{n}{2} (2a + (n - 1)d) \), where \( n \) is the number of terms, \( a \) is the first term, and \( d \) is the common difference, you can set up the equation for the first five terms: \( 0 = \frac{5}{2} (2a + 4d) \). Knowing that the last term is 4 (5th term = \( a + 4d = 4 \)), you can solve this system of equations to find \( a \) and \( d \). For the second problem, you start with the equation for the sum of the first five terms, which is stated as \( S_5 = 5 \). Employing the common formulas and the additional condition that the fourth term is 6 more than the seventh term gives you another equation to work with. Solving these together will lead you to find \( a \) (the first term) and \( d \) (the common difference), allowing you to find the sum of the first ten terms using \( S_{10} = 5(2a + 9d) \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad