Pregunta
upstudy study bank question image url

  1. Let be an abelian group of order . If divides , prove that has a
    subgroup of order .

Ask by Huff Summers. in the United States
Mar 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove that an abelian group of order has a subgroup of order when divides , follow these steps:
  1. Express as a Direct Product of Cyclic Groups: By the Fundamental Theorem of Finite Abelian Groups, can be written as , where are prime numbers and are positive integers.
  2. Factor into Prime Powers: Since divides , we can write , with for each .
  3. Construct Subgroups for Each Cyclic Component: For each , find a subgroup of of order . If , is the trivial subgroup.
  4. Form the Direct Product of Subgroups: Let . The order of is .
  5. Conclusion: is a subgroup of with order , proving that has a subgroup of order .
Thus, an abelian group of order that is divisible by contains a subgroup of order .

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

Did you know that the structure of abelian groups is beautifully tied to the concept of the Fundamental Theorem of Finite Abelian Groups? This theorem states that any finite abelian group can be expressed as a direct product of cyclic groups of prime power order. Since divides , the existence of a subgroup can be demonstrated through the cyclic components whose orders are divisors of . This means there’s a way to “carve out” a subgroup of order from the original group.
In practice, finding a subgroup of order boils down to leveraging the properties of the cyclic groups. If can be expressed as a direct sum of cyclic groups, you can identify a subgroup of the appropriate order by selecting elements that generate a cyclic group of order . A common mistake here is assuming that all elements can form subgroups independent of their specific orders; however, understanding the core structure and divisibility ensures you find exactly the subgroup you need!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad