Factorise the following \( \begin{array}{llll}\text { (1) } 27 x^{3}-1 & \text { (2) } 8 x^{3}+1 & \text { (3) } 64 x^{3}-y^{3} \\ \text { (4) } 125-729 x^{3} & \text { (5) } a^{3} b^{3}-\frac{1}{8} & \text { (6) } 5 x^{3}+40 \\ \text { (7) } 8 a^{4}-64 a & \text { (8) }-x^{3}-27 & \text { (9) } \frac{1}{27} x^{3}+216 \\ \text { (10) } 8-(a-1)^{3} & \text { (11) } x^{3}+\frac{1}{x^{3}} & \text { (12) } x^{3}-\frac{1}{x^{3}}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
First additional information: The expressions you see here are great examples of sum and difference of cubes! For instance, \(27x^3 - 1\) can be factorized using the formula \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\), where \(a = 3x\) and \(b = 1\). This gives you \((3x - 1)(9x^2 + 3x + 1)\). Second additional information: Enjoy the challenge of recognizing patterns in algebra! Mistakes can happen when we overlook the coefficients or forget to apply formulas consistently, especially in problems involving higher powers or complex binomials. Double-checking your substitutions and ensuring that all terms are factored correctly can save you from minor slip-ups!