Pregunta
At least one of the answers above is NOT correct.
(1 point)
Suppose
.
(a) The rectangles in the graph on the left illustrate a left endpoint Riemann sum for
on the interval
. The value of this left endpoint Riemann sum is
, and it is an
underestimate of the area of the region enclosed by
, the
-axis, and the vertical lines
and
.
(b) The rectangles in the graph on the right illustrate a right endpoint Riemann sum for
on the interval
. The value of this right endpoint Riemann sum is
, and it is an overestimate of the area of the region enclosed by
, the
-axis, and the vertical lines
and
.
Preview Mv Answers
Submit Answers
(1 point)
Suppose
(a) The rectangles in the graph on the left illustrate a left endpoint Riemann sum for
(b) The rectangles in the graph on the right illustrate a right endpoint Riemann sum for
Preview Mv Answers
Submit Answers
Ask by Pearson Mcfarlane. in the United States
Mar 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
(a) The left endpoint Riemann sum is
and it is an underestimate of the area.
(b) The right endpoint Riemann sum is
and it is an overestimate of the area.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To calculate the left endpoint Riemann sum for
on the interval
with
subintervals, we find the widths of the subintervals, which are equal to
. The left endpoints are
and
. The values of the function at these points are
and
. Thus, the left endpoint Riemann sum is
. This sum underestimates the area because the function is increasing on the interval.
For the right endpoint Riemann sum, we use the same
of 1, with the right endpoints being
and
. The values are
and
. Thus, the right endpoint Riemann sum is
. This sum overestimates the area for the same reason: the function is increasing.
So, in summary:
(a) The value of the left endpoint Riemann sum is , and it is an underestimate.
(b) The value of the right endpoint Riemann sum is , and it is an overestimate.
(a) The value of the left endpoint Riemann sum is
(b) The value of the right endpoint Riemann sum is

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium