Pregunta
upstudy study bank question image url

Solve using the addition and multiplication principles. \( 4-8 y-3 y<92 \) Select the correct choice below and fill in the answer box within your choice. (Simplify your answer.) A. The solution set is \( \{y \mid y \geq \square\} \). B. The solution set is \( \{y \mid y \leq \square\} \). C. The solution set is \( \{y \mid y<\square\} \). D. The solution set is \( \{y \mid y>\square\} \).

Ask by Todd Brooks. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set is \( \{y \mid y > -8\} \), choice D.

Solución

To solve the inequality \( 4 - 8y - 3y < 92 \) using the addition and multiplication principles, we will follow these steps: 1. **Combine like terms**: The terms involving \( y \) are \( -8y \) and \( -3y \). We can combine these: \[ -8y - 3y = -11y \] So the inequality becomes: \[ 4 - 11y < 92 \] 2. **Isolate the term with \( y \)**: We will subtract 4 from both sides of the inequality: \[ 4 - 11y - 4 < 92 - 4 \] This simplifies to: \[ -11y < 88 \] 3. **Divide by -11**: When dividing by a negative number, we must reverse the inequality sign: \[ y > \frac{88}{-11} \] Simplifying the right side gives: \[ y > -8 \] Now we can express the solution set. The solution set is: \[ \{y \mid y > -8\} \] Thus, the correct choice is: **D. The solution set is \( \{y \mid y > -8\} \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \( 4 - 8y - 3y < 92 \), we start by combining like terms: 1. Combine the \(y\) terms: \(-8y - 3y = -11y\) So the inequality becomes: \(4 - 11y < 92\) 2. Next, subtract 4 from both sides: \(-11y < 92 - 4\) \(-11y < 88\) 3. Now, divide both sides by -11. Remember, when dividing by a negative number, we reverse the inequality sign: \(y > \frac{88}{-11}\) \(y > -8\) Thus, the solution set is \( \{y \mid y > -8\} \), which corresponds to option D. First additional information: Did you know that the principle of solving inequalities follows similar rules as solving equations? The only catch is the direction of the inequality sign must be reversed whenever you multiply or divide both sides by a negative number! This little twist can trip you up, but it’s essential for getting the correct solution. Second additional information: Inequalities can be a part of real-world situations, like determining how many units of a product you can produce given the constraints of time and resources. For instance, if you know producing a toy takes 11 hours and you want to produce more than a certain quantity, you can use inequalities to plan your production schedule effectively. It's like saving time by being smart about your resources!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad