Pregunta
factor \( 6 x^{4}+8 x^{2}=26 x^{3} \)
Ask by Lee Stuart. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The polynomial factors to \( 2x^2 (3x - 1)(x - 4) \).
Solución
To factor the polynomial \( 6x^{4} + 8x^{2} = 26x^{3} \), follow these steps:
1. **Rewrite in Standard Form:**
First, bring all terms to one side to get the polynomial in standard form:
\[
6x^4 - 26x^3 + 8x^2 = 0
\]
2. **Factor Out the Greatest Common Factor (GCF):**
Identify and factor out the GCF from all terms. The GCF here is \( 2x^2 \):
\[
2x^2 (3x^2 - 13x + 4) = 0
\]
3. **Factor the Quadratic Expression:**
Now, factor the quadratic \( 3x^2 - 13x + 4 \). Look for two numbers that multiply to \( 3 \times 4 = 12 \) and add up to \(-13\). These numbers are \(-12\) and \(-1\).
Rewrite the quadratic using these numbers:
\[
3x^2 - 12x - x + 4
\]
Factor by grouping:
\[
3x(x - 4) - 1(x - 4) = (3x - 1)(x - 4)
\]
4. **Combine All Factors:**
Putting it all together, the fully factored form of the original polynomial is:
\[
2x^2 (3x - 1)(x - 4) = 0
\]
**Final Factored Form:**
\[
2x^2 (3x - 1)(x - 4)
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To factor the equation \( 6 x^{4}+8 x^{2}-26 x^{3} = 0 \), we can start by rearranging it as \( 6 x^{4}-26 x^{3}+8 x^{2} = 0 \). Now, let's factor out the greatest common factor (GCF), which is \( 2 x^{2} \): \[ 2 x^{2} (3 x^{2} - 13 x + 4) = 0 \] Next, we need to factor the quadratic \( 3 x^{2} - 13 x + 4 \). By using the quadratic formula, we find the roots and can further express it factored form eventually leading to the solution of the equation. Now you’ve got a great expression to work with in factored form!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium