Pregunta
upstudy study bank question image url

if the domain of function below is
, what is ?

Ask by Mcfarlane Chadwick. in Iran
Nov 21,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solución

To determine the values of and such that the function
has a domain of , we need to ensure that the denominator is equal to zero at and is non-zero for all other real numbers.
First, we substitute into the denominator:
This simplifies to:
Rearranging gives us:
Next, we need to ensure that the quadratic does not have any other real roots. The condition for a quadratic to have no real roots is that its discriminant must be less than zero. The discriminant for our quadratic is given by:
Substituting from equation (1) into the discriminant:
This simplifies to:
We want this discriminant to be less than zero:
Factoring the quadratic:
The expression is always non-negative and equals zero when . Therefore, the only solution is:
Substituting back into equation (1) to find :
Thus, we have:
Finally, we calculate :
Therefore, the answer is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find , we need to ensure that the denominator does not equal zero when , since this value is excluded from the domain. Plugging in , we have:
For the function to be defined everywhere except , the expression must equal zero when . So we set it equal to zero:
Now we can express :
To find specific values for and , we could set up another equation, but since we need to express in terms of only, we can conclude:
Thus, can be defined in this form without exact values for and . If you choose a value for , you can derive and calculate accordingly.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad