Pregunta

What is the value of \( a^0 \) when \( a \neq 0 \)?

Ask by Allan Greene. in South Africa
Jan 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a^0 = 1 \) when \( a \neq 0 \).

Solución

For any non-zero real number \( a \), the expression \( a^0 \) is equal to **1**. This might initially seem counterintuitive, but it is consistent with the rules of exponents. Here's why: ### Understanding Exponent Rules One of the fundamental properties of exponents is: \[ a^m \div a^n = a^{m-n} \] Let's apply this property to understand \( a^0 \): \[ a^n \div a^n = a^{n-n} = a^0 \] But \( a^n \div a^n \) is also equal to 1 (since any non-zero number divided by itself is 1): \[ a^n \div a^n = 1 \] Therefore: \[ a^0 = 1 \] ### Example Consider \( a = 5 \): \[ 5^0 = 1 \] Similarly, for \( a = -3 \): \[ (-3)^0 = 1 \] ### Important Note - **Undefined Expression:** The expression \( 0^0 \) is **undefined** in mathematics because it can lead to contradictory results depending on the context. However, as long as \( a \neq 0 \), \( a^0 \) is always 1. ### Summary \[ a^0 = 1 \quad \text{for any} \quad a \neq 0 \] This rule is widely accepted and used consistently across different areas of mathematics, including algebra, calculus, and beyond.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The value of \( a^0 \) when \( a \neq 0 \) is 1. This is based on the properties of exponents; when we divide like bases, we subtract the exponents. For example, \( a^m / a^m = a^{m-m} = a^0 \). Since \( a^m / a^m = 1 \) (as long as \( a \neq 0 \)), it follows that \( a^0 = 1 \). In simpler terms, if you think of it as a recipe, zero is like the salt that doesn't change the outcome of the dish when you’ve got the other ingredients (where here, \( a \) is your ingredient!). No matter how you mix it up, as long as you have that spice, the result is 1!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad