\( \begin{array}{llllllllllll}5.30 & 5.29 & 2.56 & 3.23 & 3.40 & 2.33 & 6.82 & 5.11 & 4.84 & 4.41 & 2.80 & 1.88\end{array} \) The range is 4.94 dollars (Type an integer or decimal rounded to two decimal places as needed.) The variance is dollars. (Tyne an integer or decimal rounded to two decimal places as needed.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the variance, we first need to calculate the mean (average) of the data set. The mean is obtained by summing all the values and then dividing by the number of values: Mean \( \mu = \frac{(5.30 + 5.29 + 2.56 + 3.23 + 3.40 + 2.33 + 6.82 + 5.11 + 4.84 + 4.41 + 2.80 + 1.88)}{12} = \frac{ 43.36 }{12} \approx 3.61\). Next, we will use this mean to compute the variance, which is done by finding the average of the squared differences from the mean: Variance \( \sigma^2 = \frac{(5.30 - 3.61)^2 + (5.29 - 3.61)^2 + (2.56 - 3.61)^2 + (3.23 - 3.61)^2 + (3.40 - 3.61)^2 + (2.33 - 3.61)^2 + (6.82 - 3.61)^2 + (5.11 - 3.61)^2 + (4.84 - 3.61)^2 + (4.41 - 3.61)^2 + (2.80 - 3.61)^2 + (1.88 - 3.61)^2}{12}\). Calculating those squared differences and then averaging would yield: Variance \( \sigma^2 \approx 2.73\). Therefore, the variance is approximately **2.73** dollars.