Pregunta
upstudy study bank question image url

A rectangle \( A B C D \) is to be drawn on a centimetre grid such that \( A \) has coordinates \( (-4,-2) \) \( B \) has coordinates \( (1,10) \) \( C \) has coordinates \( (19, a) \) \( D \) has coordinates \( (b, c) \) Work out the value of \( a \), the value of \( b \) and the value of \( c \). (4 marks) \( \theta a= \) \( \theta b= \) \( \theta c= \)

Ask by Todd Edwards. in Singapore
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a = \frac{5}{2} \), \( b = 14 \), \( c = -\frac{19}{2} \)

Solución

To determine the values of \( a \), \( b \), and \( c \) for rectangle \( ABCD \) with the given coordinates: - \( A = (-4, -2) \) - \( B = (1, 10) \) - \( C = (19, a) \) - \( D = (b, c) \) **Step 1: Determine \( b \) and \( c \)** Since \( ABCD \) is a rectangle, the diagonals \( AC \) and \( BD \) must bisect each other. Therefore, the midpoints of \( AC \) and \( BD \) must be equal. - **Midpoint of \( AC \):** \[ \left( \frac{-4 + 19}{2}, \frac{-2 + a}{2} \right) = \left( \frac{15}{2}, \frac{a - 2}{2} \right) \] - **Midpoint of \( BD \):** \[ \left( \frac{1 + b}{2}, \frac{10 + c}{2} \right) \] Setting the midpoints equal: \[ \frac{1 + b}{2} = \frac{15}{2} \quad \Rightarrow \quad b = 14 \] \[ \frac{10 + c}{2} = \frac{a - 2}{2} \quad \Rightarrow \quad c = a - 12 \] **Step 2: Determine \( a \)** For \( ABCD \) to be a rectangle, adjacent sides must be perpendicular. Compute the vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AD} \): - \( \overrightarrow{AB} = (1 - (-4), 10 - (-2)) = (5, 12) \) - \( \overrightarrow{AD} = (14 - (-4), c - (-2)) = (18, a - 10) \) The dot product of these vectors must be zero: \[ 5 \cdot 18 + 12 \cdot (a - 10) = 0 \quad \Rightarrow \quad 90 + 12a - 120 = 0 \quad \Rightarrow \quad 12a = 30 \quad \Rightarrow \quad a = \frac{30}{12} = \frac{5}{2} \] **Step 3: Substitute \( a \) to find \( c \)** \[ c = a - 12 = \frac{5}{2} - 12 = \frac{5 - 24}{2} = \frac{-19}{2} \] **Final Values:** \[ \theta a = \frac{5}{2} \] \[ \theta b = 14 \] \[ \theta c = \frac{-19}{2} \] **Answer Summary:** \[ \theta a = \frac{5}{2}, \quad \theta b = 14, \quad \theta c = \frac{-19}{2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the values of \( a \), \( b \), and \( c \) for the rectangle \( ABCD \), we know the coordinates of points \( A \) and \( B \). Given: - \( A = (-4, -2) \) - \( B = (1, 10) \) To effectively find points \( C \) and \( D \), we can utilize the properties of the rectangle. Specifically, opposite sides of a rectangle are parallel, and the diagonals bisect each other. 1. **Finding \( a \):** The y-coordinates of points \( A \) and \( B \) differ by a certain amount which should also represent the vertical distance between points \( C \) and \( D \). Since \( C \) and \( D \) will vertically align with \( A \) and \( B \), we have: \[ a = -2 + (10 - (-2)) = -2 + 12 = 10 \] 2. **Finding \( b \):** The x-coordinate \( b \) for point \( D \) should equal the x-coordinate of point \( A \). Since \( A \) is \( (-4, -2) \) and the diagonal \( AC \) should equal the diagonal \( BD \): \[ b = -4 \] 3. **Finding \( c \):** Finally, the y-coordinate \( c \) for point \( D \) must be directly aligned with \( B \) since they are opposite corners of the rectangle. \[ c = 10 \] So, the final coordinates are: - \( a = 10 \) - \( b = -4 \) - \( c = 10 \) Thus, we can summarize: \[ \theta a = 10, \theta b = -4, \theta c = 10. \]

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad