Pregunta
QUESTION 6 Evaluate the following limits: (a) \( \lim _{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \) (2) (b) \( \lim _{u \rightarrow-2} \sqrt{u^{2}+3 u+6} \) (c) Let \( f(x)=\frac{2 x+12}{|x+6|} \) (i) \( \lim _{x \rightarrow 6^{+}} f(x) \) (ii) \( \lim _{x \rightarrow 6^{-}} f(x) \) (iii) Use (i) and (ii) to deduce \( \lim f(x) \) at \( x=6 \). (3) (d) \( f(x)=\left\{\begin{array}{ll}\cos (x) & x<0 \\ 0 & x=0 \\ 1-x^{2} & x>0\end{array}\right. \) (i) Sketch the graph of \( f(x) \). (2) (ii) Is \( f(x) \) continuous at \( x=0 \) ? Give reason(s) for your answer. (3) [18]
Ask by Turner Carter. in South Africa
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
**6(a)**: The limit is 180.
**6(b)**: The limit is 2.
**6(c)(i)**: The limit as \( x \) approaches 6 from the right is 2.
**6(c)(ii)**: The limit as \( x \) approaches 6 from the left is 2.
**6(c)(iii)**: The overall limit as \( x \) approaches 6 is 2.
**6(d)(i)**: The graph of \( f(x) \) consists of the cosine curve for \( x < 0 \), a single point at \( (0, 0) \), and the parabola \( 1 - x^{2} \) for \( x > 0 \).
**6(d)(ii)**: The function \( f(x) \) is not continuous at \( x = 0 \) because the limit as \( x \) approaches 0 is 1, but \( f(0) = 0 \).
Solución
Let's evaluate each part of Question 6 step by step.
---
### **6(a). \( \displaystyle \lim_{x \rightarrow 2}\left(x^{2}+x\right)\left(3 x^{3}+6\right) \)**
**Solution:**
To evaluate the limit of a product of functions as \( x \) approaches a specific value, we can compute the limits of each individual function and then multiply them, provided the limits exist.
1. **Compute \( \lim_{x \rightarrow 2} (x^2 + x) \):**
\[
\lim_{x \rightarrow 2} (x^2 + x) = (2)^2 + 2 = 4 + 2 = 6
\]
2. **Compute \( \lim_{x \rightarrow 2} (3x^3 + 6) \):**
\[
\lim_{x \rightarrow 2} (3x^3 + 6) = 3(2)^3 + 6 = 3(8) + 6 = 24 + 6 = 30
\]
3. **Multiply the two limits:**
\[
\lim_{x \rightarrow 2} \left(x^{2}+x\right)\left(3x^{3}+6\right) = 6 \times 30 = 180
\]
**Answer:** \( 180 \)
---
### **6(b). \( \displaystyle \lim_{u \rightarrow -2} \sqrt{u^{2} + 3u + 6} \)**
**Solution:**
To find this limit, substitute \( u = -2 \) directly into the function inside the square root, provided the expression under the square root remains non-negative.
1. **Plug \( u = -2 \) into the expression:**
\[
u^2 + 3u + 6 = (-2)^2 + 3(-2) + 6 = 4 - 6 + 6 = 4
\]
2. **Take the square root:**
\[
\sqrt{4} = 2
\]
**Answer:** \( 2 \)
---
### **6(c). Let \( f(x) = \dfrac{2x + 12}{|x + 6|} \)**
#### **6(c)(i). \( \displaystyle \lim_{x \rightarrow 6^{+}} f(x) \)**
**Solution:**
First, interpret \( x \rightarrow 6^{+} \) (approaching 6 from the right).
1. **Simplify \( f(x) \):**
\[
f(x) = \frac{2x + 12}{|x + 6|}
\]
2. **As \( x \rightarrow 6^{+} \), \( x + 6 \) is positive (since \( 6 + 6 = 12 > 0 \)), so \( |x + 6| = x + 6 \):**
\[
f(x) = \frac{2x + 12}{x + 6} = \frac{2(x + 6)}{x + 6} = 2 \quad \text{(for } x \neq -6 \text{)}
\]
3. **Thus, the limit is:**
\[
\lim_{x \rightarrow 6^{+}} f(x) = 2
\]
**Answer:** \( 2 \)
#### **6(c)(ii). \( \displaystyle \lim_{x \rightarrow 6^{-}} f(x) \)**
**Solution:**
Now, interpret \( x \rightarrow 6^{-} \) (approaching 6 from the left).
1. **As \( x \rightarrow 6^{-} \), \( x + 6 \) is still positive (since \( 6 + 6 = 12 > 0 \)), so \( |x + 6| = x + 6 \):**
\[
f(x) = \frac{2x + 12}{x + 6} = \frac{2(x + 6)}{x + 6} = 2 \quad \text{(for } x \neq -6 \text{)}
\]
2. **Thus, the limit is:**
\[
\lim_{x \rightarrow 6^{-}} f(x) = 2
\]
**Answer:** \( 2 \)
#### **6(c)(iii). Deduce \( \displaystyle \lim_{x \rightarrow 6} f(x) \)**
**Solution:**
Since both the right-hand limit and the left-hand limit as \( x \rightarrow 6 \) are equal and finite:
\[
\lim_{x \rightarrow 6} f(x) = 2
\]
**Answer:** \( 2 \)
---
### **6(d). \( f(x) = \begin{cases}
\cos(x) & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
1 - x^{2} & \text{if } x > 0
\end{cases} \)**
#### **6(d)(i). Sketch the graph of \( f(x) \)**
**Solution:**
To sketch the graph, consider each piece of the function separately.
1. **For \( x < 0 \):**
\[
f(x) = \cos(x)
\]
- Plot the cosine curve for negative \( x \).
2. **At \( x = 0 \):**
\[
f(0) = 0
\]
- Place a point at \( (0, 0) \). Note that \( \cos(0) = 1 \) but \( f(0) = 0 \), indicating a point discontinuity.
3. **For \( x > 0 \):**
\[
f(x) = 1 - x^{2}
\]
- This is a downward-opening parabola with vertex at \( (0, 1) \).
4. **Mark the behavior near \( x = 0 \):**
- From the left, \( \cos(0) = 1 \), approaching \( 1 \) as \( x \) approaches 0 from the negative side.
- From the right, as \( x \) approaches 0, \( 1 - x^{2} \) approaches 1.
**Sketch Description:**
- **Left of 0:** The standard cosine curve curving from \( ( -\pi, \cos(-\pi) = -1 ) \) upward to \( (0, 1) \).
- **At 0:** A single point at \( (0, 0) \).
- **Right of 0:** A parabola starting from just below \( (0, 1) \), descending downward as \( x \) increases.
**[Since this is a text-based medium, here's a description. For an actual graph, refer to graphing tools or graph paper.]**
**Answer:** *[As described above.]*
#### **6(d)(ii). Is \( f(x) \) continuous at \( x = 0 \)? Give reason(s) for your answer.**
**Solution:**
To determine continuity at \( x = 0 \), three conditions must be satisfied:
1. **\( f(0) \) is defined:**
- Yes, \( f(0) = 0 \).
2. **\( \lim_{x \rightarrow 0} f(x) \) exists:**
- Compute left-hand and right-hand limits.
**Left-hand limit (\( x \rightarrow 0^{-} \)):**
\[
\lim_{x \rightarrow 0^{-}} f(x) = \lim_{x \rightarrow 0^{-}} \cos(x) = \cos(0) = 1
\]
**Right-hand limit (\( x \rightarrow 0^{+} \)):**
\[
\lim_{x \rightarrow 0^{+}} f(x) = \lim_{x \rightarrow 0^{+}} (1 - x^{2}) = 1 - 0 = 1
\]
- Since both one-sided limits are equal, \( \lim_{x \rightarrow 0} f(x) = 1 \).
3. **\( \lim_{x \rightarrow 0} f(x) = f(0) \):**
- \( \lim_{x \rightarrow 0} f(x) = 1 \) vs. \( f(0) = 0 \).
- They are not equal.
**Conclusion:**
Since \( \lim_{x \rightarrow 0} f(x) \neq f(0) \), the function \( f(x) \) is **not continuous** at \( x = 0 \).
**Answer:** No, \( f(x) \) is not continuous at \( x = 0 \) because the limit as \( x \) approaches 0 is 1, which does not equal \( f(0) = 0 \).
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
First Line: For part (a), plugging in \( x = 2 \) directly gives \( (2^2 + 2)(3 \cdot 2^3 + 6) = (4 + 2)(24 + 6) = 6 \cdot 30 = 180 \). So, the limit is 180! Second Line: In part (b), when \( u \to -2 \), we simply input \( u = -2 \) into \( \sqrt{u^2 + 3u + 6} \): \( \sqrt{(-2)^2 + 3(-2) + 6} = \sqrt{4 - 6 + 6} = \sqrt{4} = 2 \). Hence, the limit is 2!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium