Pregunta
upstudy study bank question image url

QUESTION 6
Evaluate the following limits:
(a)
(2)
(b)
© Let
(i)
(ii)
(iii) Use (i) and (ii) to deduce at .
(3)
(d)
(i) Sketch the graph of .
(2)
(ii) Is continuous at ? Give reason(s) for your answer.
(3)
[18]

Ask by Turner Carter. in South Africa
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

6(a): The limit is 180.
6(b): The limit is 2.
6©(i): The limit as approaches 6 from the right is 2.
6©(ii): The limit as approaches 6 from the left is 2.
6©(iii): The overall limit as approaches 6 is 2.
6(d)(i): The graph of consists of the cosine curve for , a single point at , and the parabola for .
6(d)(ii): The function is not continuous at because the limit as approaches 0 is 1, but .

Solución

Let’s evaluate each part of Question 6 step by step.

6(a).

Solution:
To evaluate the limit of a product of functions as approaches a specific value, we can compute the limits of each individual function and then multiply them, provided the limits exist.
  1. Compute :
  2. Compute :
  3. Multiply the two limits:
Answer:

6(b).

Solution:
To find this limit, substitute directly into the function inside the square root, provided the expression under the square root remains non-negative.
  1. Plug into the expression:
  2. Take the square root:
Answer:

6©. Let

6©(i).

Solution:
First, interpret (approaching 6 from the right).
  1. Simplify :
  2. As , is positive (since ), so :
  3. Thus, the limit is:
Answer:

6©(ii).

Solution:
Now, interpret (approaching 6 from the left).
  1. As , is still positive (since ), so :
  2. Thus, the limit is:
Answer:

6©(iii). Deduce

Solution:
Since both the right-hand limit and the left-hand limit as are equal and finite:
Answer:

**6(d). ( f(x) = \begin{cases}

\cos(x) & if x < 0 \
0 & if x = 0 \
1 - x^{2} & if x > 0
\end{cases} )**

6(d)(i). Sketch the graph of

Solution:
To sketch the graph, consider each piece of the function separately.
  1. For :
    • Plot the cosine curve for negative .
  2. At :
    • Place a point at . Note that but , indicating a point discontinuity.
  3. For :
    • This is a downward-opening parabola with vertex at .
  4. Mark the behavior near :
    • From the left, , approaching as approaches 0 from the negative side.
    • From the right, as approaches 0, approaches 1.
Sketch Description:
  • Left of 0: The standard cosine curve curving from upward to .
  • At 0: A single point at .
  • Right of 0: A parabola starting from just below , descending downward as increases.
[Since this is a text-based medium, here’s a description. For an actual graph, refer to graphing tools or graph paper.]
Answer: [As described above.]

6(d)(ii). Is continuous at ? Give reason(s) for your answer.

Solution:
To determine continuity at , three conditions must be satisfied:
  1. is defined:
    • Yes, .
  2. exists:
    • Compute left-hand and right-hand limits.
    Left-hand limit ( ):
    Right-hand limit ( ):
    • Since both one-sided limits are equal, .
  3. :
    • vs. .
    • They are not equal.
Conclusion:
Since , the function is not continuous at .
Answer: No, is not continuous at because the limit as approaches 0 is 1, which does not equal .

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

First Line: For part (a), plugging in directly gives . So, the limit is 180!
Second Line: In part (b), when , we simply input into : . Hence, the limit is 2!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad