\( 11 \frac{1}{4} \) inches and an area of \( 50 \frac{5}{8} \) square inches. Find the length of the tray in inches,
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the length of the tray, you first convert the mixed numbers into improper fractions. For \( 11 \frac{1}{4} \): \[ 11 \frac{1}{4} = \frac{44}{4} + \frac{1}{4} = \frac{45}{4} \text{ inches} \] For \( 50 \frac{5}{8} \): \[ 50 \frac{5}{8} = \frac{400}{8} + \frac{5}{8} = \frac{405}{8} \text{ square inches} \] If the width of the tray is \( \frac{45}{4} \) inches, we can use the area formula for rectangles (Area = Length × Width) to find the length \( L \). Setting up the equation: \[ \frac{405}{8} = L \times \frac{45}{4} \] To isolate \( L \), rearranging gives: \[ L = \frac{405}{8} \div \frac{45}{4} = \frac{405}{8} \times \frac{4}{45} \] Multiplying the fractions: \[ L = \frac{405 \times 4}{8 \times 45} = \frac{1620}{360} = \frac{9}{2} = 4.5 \text{ inches} \] Therefore, the length of the tray is \( 4.5 \) inches.