11 Determine the value(s) of \( x \) and/or \( y \) in each of the following geometric sequences: a \( 2 ; x ; 32 ; \ldots \) b \( x+1 ; x-1 ; x ; \ldots \) c \( 20 ; x ; y ;-\frac{4}{25} \) d \( 7 x+1 ; 2 x+2 ; x-1 ; \ldots \) e \( 7 ; x ; y ; 56 ; \ldots \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To determine the values of \( x \) and/or \( y \) in each geometric sequence, we can use the property that in a geometric sequence, the ratio of consecutive terms is constant. For **a** \( 2 ; x ; 32 ; \ldots \): The common ratio \( r \) can be defined as \( r = \frac{x}{2} = \frac{32}{x} \). Cross-multiplying gives \( x^2 = 64 \), leading to \( x = 8 \) (since we are usually looking for positive sequences). For **b** \( x+1 ; x-1 ; x ; \ldots \): Here, \( r = \frac{x-1}{x+1} = \frac{x}{x-1} \). Cross-multiplying gives \( (x-1)^2 = (x+1)x \), leading to \( x^2 - 2x + 1 = x^2 + x \) which simplifies to \( -2x + 1 - x = 0 \) resulting in \( x = \frac{1}{3} \). However, checking reveals no valid sequence. For **c** \( 20 ; x ; y ; -\frac{4}{25} \): Let \( r \) be the common ratio. Then, \( \frac{x}{20} = \frac{y}{x} = \frac{-\frac{4}{25}}{y} \). Solving \( \frac{x}{20} = r \) gives \( x = 20r \), and substituting in next yields \( y = 20r^2 \). Through relationships, \( y = -\frac{4}{25r^2} \) leads to ratios and we finally find \( x=-5 \) and \( y=25 \). For **d** \( 7x + 1 ; 2x + 2 ; x - 1 ; \ldots \): Let \( r = \frac{2x + 2}{7x + 1} = \frac{x - 1}{2x + 2} \). Cross-multiplying gives a quadratic, solving it results in possible values of \( x \). For **e** \( 7 ; x ; y ; 56 ; \ldots \): Using common ratio \( r \), we note \( r = \frac{x}{7} = \frac{y}{x} = \frac{56}{y} \). Setting these equal and solving for \( x \) and \( y \), we find \( x = 14 \) and \( y = 28 \). By applying these formulas carefully, you unlock the formulas behind the sequences and show off your skills! Geometric sequences aren’t just a dry math topic, they’re a puzzle begging to be solved!