Pregunta
upstudy study bank question image url

11 Determine the value(s) of and/or in each of the following
geometric sequences:
a
b
c
d
e

Ask by Reyes Bowen. in South Africa
Jan 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a) or
b)
c) and
d) or
e) and

Solución

Let’s solve each part step by step, identifying the values of and/or that make each sequence geometric. In a geometric sequence, the ratio between consecutive terms is constant.

Problem 11a:

Sequence:
Solution:
For a geometric sequence, the ratio between consecutive terms is constant:
Cross-multiply to solve for :
Answer: or

Problem 11b:

Sequence:
Solution:
Let the common ratio be . Then:
Cross-multiply:
Expand both sides:
Subtract from both sides:
Answer:

Problem 11c:

Sequence:
Solution:
Let the common ratio be .
Solve for :
Now find and :
Answer: and

Problem 11d:

Sequence:
Solution:
Let the common ratio be .
Cross-multiply:
Expand both sides:
Simplify:
Bring all terms to one side:
Solve the quadratic equation:
We need to verify which solution(s) make sense in the context of a geometric sequence (i.e., the ratios are consistent).
For :
Ratios:
Consistent.
For :
Ratios:
Consistent.
Answer: or

Problem 11e:

Sequence:
Solution:
Let the common ratio be .
Solve for :
Now find and :
Answer: and

Summary of Answers:

a) or

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the values of and/or in each geometric sequence, we can use the property that in a geometric sequence, the ratio of consecutive terms is constant.
For a :
The common ratio can be defined as .
Cross-multiplying gives , leading to (since we are usually looking for positive sequences).
For b :
Here, .
Cross-multiplying gives , leading to which simplifies to resulting in . However, checking reveals no valid sequence.
For c :
Let be the common ratio. Then, . Solving gives , and substituting in next yields . Through relationships, leads to ratios and we finally find and .
For d :
Let . Cross-multiplying gives a quadratic, solving it results in possible values of .
For e :
Using common ratio , we note . Setting these equal and solving for and , we find and .
By applying these formulas carefully, you unlock the formulas behind the sequences and show off your skills! Geometric sequences aren’t just a dry math topic, they’re a puzzle begging to be solved!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad