Pregunta
upstudy study bank question image url

4. Pat plans to retire at 57 , and will receive a cash payment of \( \$ 50000 \) from a profit sharing plan. The total sum received will be used to set up an annuity with an insurance company at \( 8 \% / \) a compounded semi-annually until age 65 . How large is each payment, if Pat is to receive two equal payments per year? ( 4 marks)

Ask by Newton Young. in Canada
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Each semi-annual payment Pat will receive is approximately \$4,312.

Solución

To determine the size of each payment Pat will receive from the annuity, we can use the present value of an annuity formula. Here's a step-by-step breakdown: ### **Given:** - **Present Value (PV):** \$50,000 - **Annual Interest Rate:** 8% compounded semi-annually - **Time Period:** 8 years (from age 57 to 65) - **Number of Payments per Year:** 2 ### **Steps:** 1. **Determine the Effective Interest Rate per Period:** - Since the interest is compounded semi-annually, the rate per period \( r \) is: \[ r = \frac{8\%}{2} = 4\% \text{ or } 0.04 \text{ per half-year} \] 2. **Calculate the Total Number of Periods (\( n \)):** - Over 8 years with 2 payments per year: \[ n = 8 \times 2 = 16 \text{ periods} \] 3. **Use the Present Value of an Annuity Formula:** \[ PV = PMT \times \left( \frac{1 - (1 + r)^{-n}}{r} \right) \] - Plugging in the known values: \[ 50,000 = PMT \times \left( \frac{1 - (1.04)^{-16}}{0.04} \right) \] 4. **Calculate the Annuity Factor:** - First, compute \( (1.04)^{-16} \approx 0.5366 \) - Then: \[ \frac{1 - 0.5366}{0.04} = \frac{0.4634}{0.04} \approx 11.585 \] 5. **Solve for \( PMT \):** \[ PMT = \frac{50,000}{11.585} \approx 4,312 \] ### **Conclusion:** Each semi-annual payment Pat will receive is approximately **\$4,312**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine how large each payment is, we need to first calculate the future value of the cash payment of \( \$50,000 \) when it is invested in an annuity at \( 8\% \) compounded semi-annually for 8 years (from age 57 to 65). 1. The interest rate per period (semi-annual) is \( \frac{8\%}{2} = 4\% \) or \( 0.04 \). 2. The number of periods (payments) is \( 8 \times 2 = 16 \). 3. We use the future value formula for an annuity: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] where \( P \) is the annuity payment, \( r \) is the interest rate per period, and \( n \) is the number of periods. We don't have \( FV \) immediately, as we first need to calculate the future value of the lump sum. \[ FV = PV \times (1 + r)^n \] In this case, \( PV = 50000 \), \( r = 0.04 \), and \( n = 16 \): \[ FV = 50000 \times (1 + 0.04)^{16} \] Calculating it: \[ FV \approx 50000 \times (1.04)^{16} \approx 50000 \times 1.8009 \approx 90045 \] Now we set up the equation for an annuity to find the payment amount. Using the future value of the annuity formula: \[ 90045 = P \times \frac{(1 + 0.04)^{16} - 1}{0.04} \] Solving for \( P \): \[ 90045 = P \times \frac{1.8009 - 1}{0.04} \] \[ 90045 = P \times 20.0225 \] \[ P \approx \frac{90045}{20.0225} \approx 4498.85 \] Therefore, each payment that Pat will receive is approximately **$4498.85**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad