Pregunta
upstudy study bank question image url

The first four terms of an arithmetic sequence are \( -11,-5 \) What is the equation for \( a_{n} \) ? \( \begin{array}{l}\text { A } a_{n}=-11(n-1)-6 \\ \text { B } a_{n}=6(n-1)-11 \\ \text { C } a_{n}=-11(n-1)+6 \\ \text { D } a_{n}=-6(n-1)-11\end{array} \)

Ask by John Bird. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation for \( a_{n} \) is \( a_{n}=6(n-1)-11 \).

Solución

To determine the equation for the \( n \)-th term (\( a_n \)) of the arithmetic sequence, let's follow these steps: 1. **Identify the Given Terms:** - First term (\( a_1 \)) = \(-11\) - Second term (\( a_2 \)) = \(-5\) 2. **Determine the Common Difference (\( d \)):** \[ d = a_2 - a_1 = (-5) - (-11) = 6 \] 3. **Use the Arithmetic Sequence Formula:** The general formula for the \( n \)-th term of an arithmetic sequence is: \[ a_n = a_1 + (n-1)d \] Substituting the known values: \[ a_n = -11 + (n-1) \times 6 = 6(n-1) - 11 \] 4. **Match with the Given Options:** The derived formula matches **Option B**. **Answer:** B) \( a_{n}=6(n-1)-11 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation for \( a_{n} \) of the arithmetic sequence, we first determine the common difference \( d \). The difference between the second term \( -5 \) and the first term \( -11 \) is: \[ d = -5 - (-11) = -5 + 11 = 6. \] The first term \( a_1 \) is \( -11 \). The general formula for the \( n \)-th term of an arithmetic sequence is: \[ a_n = a_1 + (n-1)d. \] Plugging in our values: \[ a_n = -11 + (n-1) \cdot 6. \] This simplifies to: \[ a_n = -11 + 6n - 6 = 6n - 17. \] And now, let's look at the answer choices: None of the provided options match our derived equation directly. However, the closest representation can be obtained by rewriting \( a_n \) and checking the forms. None are correct in this case. Here's a fun fact: Arithmetic sequences are often used in real-life situations, such as calculating monthly payments or understanding the uniform growth of investments! For a bonus, if you plan on diving deeper into sequences, consider exploring geometric sequences! They're like arithmetic sequences but multiply instead of adding, giving an entirely different spin on the patterns you can create!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad