Pregunta
upstudy study bank question image url

4.39 Weights of pennies: The distribution of weights of United States pennies is approximately normal
with a mean of 2.5 grams and a standard deviation of 0.03 grams.
(a) What is the probability that a randomly chosen penny weighs less than 2.4 grams?
(please round to four decimal places)
(b) Describe the sampling distribution of the mean weight of 10 randomly chosen pennies.
Mean: grams (please round to one decimal place)
Standard Deviation:
© What is the probability that the mean weight of 10 pennies is less than 2.4 grams?
(please round to four decimal places)

Ask by Bartlett Powers. in the United States
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that a randomly chosen penny weighs less than 2.4 grams is 0.0004.
The sampling distribution of the mean weight of 10 pennies has a mean of 2.5 grams and a standard deviation of approximately 0.0095 grams.
The probability that the mean weight of 10 pennies is less than 2.4 grams is 0.0000.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find the answers to your questions, let’s break it down step-by-step.

(a)

First, we want to find the probability that a randomly chosen penny weighs less than 2.4 grams. We will use the Z-score formula to do this:
Where:
  • = the value we are interested in (2.4 grams)
  • = the mean (2.5 grams)
  • = standard deviation (0.03 grams)
Calculating the Z-score:
Next, we will use a standard normal distribution table or a calculator to find the probability corresponding to .
Using the Z-table or a normal distribution calculator:
P(Z < -3.33) ≈ 0.0004
Rounding to four decimal places, the probability that a randomly chosen penny weighs less than 2.4 grams is 0.0004.

(b)

Next, we need to describe the sampling distribution of the mean weight of 10 randomly chosen pennies. The mean of the sampling distribution is equal to the mean of the population, and the standard deviation is the standard deviation of the population divided by the square root of the sample size (n).
  • Mean of the sampling distribution (same as the population mean):
  • Standard deviation of the sampling distribution:
Thus, rounding to one decimal place:
Mean: 2.5 grams
Standard Deviation: 0.0095 grams (or about 0.01 grams when rounded to two decimal places).

©

Now we will find the probability that the mean weight of 10 pennies is less than 2.4 grams. We will use the Z-score formula again but with the mean of the sampling distribution and the sampling distribution’s standard deviation.
Calculating the Z-score:
Using a standard normal distribution table or calculator:
P(Z < -10.53) is extremely close to 0.
Since it is well beyond the practical range of Z-scores in standard normal tables, we can conclude that:
The probability that the mean weight of 10 pennies is less than 2.4 grams is approximately 0.0000 (rounding to four decimal places).

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad