Pregunta
upstudy study bank question image url

Answer \[ y=4 x+4 y=-12 \] Graph the linear equations by writing the equations in slope-intercept form: \[ y=\square x+\square+\square \] Identify the appropriate number of solutions. If there is a solution, give the point:

Ask by Coles Hall. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The two lines intersect at one point: (-4, -12).

Solución

Let's analyze and graph the given linear equations, identify their forms, and determine their solutions. ### Given Equations: 1. \( y = 4x + 4 \) 2. \( y = -12 \) ### Step 1: Write Both Equations in Slope-Intercept Form The slope-intercept form of a linear equation is: \[ y = mx + b \] where: - \( m \) is the slope, - \( b \) is the y-intercept. **First Equation:** \[ y = 4x + 4 \] This equation is already in slope-intercept form. - **Slope (\( m \))**: 4 - **Y-intercept (\( b \))**: 4 **Second Equation:** \[ y = -12 \] To express this in slope-intercept form, recognize that it is a horizontal line where the slope is 0. \[ y = 0x - 12 \] - **Slope (\( m \))**: 0 - **Y-intercept (\( b \))**: -12 ### Step 2: Graphing the Equations 1. **Graph of \( y = 4x + 4 \):** - **Slope (4):** For every 1 unit increase in \( x \), \( y \) increases by 4 units. - **Y-intercept (4):** The line crosses the y-axis at (0, 4). 2. **Graph of \( y = -12 \):** - This is a horizontal line that crosses the y-axis at (0, -12). *Graph Illustration:* ``` y | | / | / | / y = 4x + 4 |-------/--------x | / | / | / y = -12 | ``` ### Step 3: Identifying the Number of Solutions To find the solution(s) where the two lines intersect, we set the equations equal to each other: \[ 4x + 4 = -12 \] **Solving for \( x \):** \[ \begin{align*} 4x + 4 &= -12 \\ 4x &= -12 - 4 \\ 4x &= -16 \\ x &= -4 \end{align*} \] **Finding \( y \):** Plugging \( x = -4 \) into either equation (using \( y = -12 \) is simplest): \[ y = -12 \] **Solution Point:** \[ (-4, -12) \] ### Summary - **Slope-Intercept Forms:** \[ \begin{align*} y &= 4x + 4 \\ y &= 0x - 12 \end{align*} \] - **Number of Solutions:** - **One solution** - **Point of Intersection:** \[ (-4, -12) \] This means the two lines intersect at exactly one point, which is \((-4, -12)\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To graph the equations, we first need to convert both equations into slope-intercept form, which is \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept. Starting with the first equation: 1. \(y = 4x + 4\) is already in slope-intercept form with a slope of \(4\) and a y-intercept of \(4\). Now for the second equation: 2. Rearranging \(4y = -12\) gives us: \[ y = -3 \] This indicates that the second equation is a horizontal line at \(y = -3\). Now, let's analyze them together: - The first equation, \(y = 4x + 4\), is a line that rises steeply. - The second equation represents a line parallel to the x-axis. To find the point of intersection, we set the two equations equal to each other: \[ 4x + 4 = -3 \] Solving for \(x\): \[ 4x = -3 - 4 \] \[ 4x = -7 \] \[ x = -\frac{7}{4} \] Substituting \(x = -\frac{7}{4}\) back into the first equation to find \(y\): \[ y = 4\left(-\frac{7}{4}\right) + 4 = -7 + 4 = -3 \] So the point of intersection, which is our solution, is: \[ \left(-\frac{7}{4}, -3\right) \] The equations intersect at one point, confirming there is exactly one solution.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad