Pregunta
upstudy study bank question image url

Unit Pretest Select the correct answer. A carpenter is building a rectangular table. He wants the perimeter of the tabletop to be no more than 28 feet. He also wants the lel be greater than or equal to the square of 2 feet less than its width. Create a system of inequalities to model the situation, where \( x \) represents the width of the tabletop and \( y \) represents the length of tl this system of inequalities to determine the viable solutions. A. Part of the solution region includes a negative length; therefore, not all solutions are viable for the given situation. B. The entire solution region is viable. C. Part of the solution region includes a negative width; therefore, not all solutions are viable for the given situation. D. No part of the solution reaion is viable because the lenath and width cannot be neaative.

Ask by Lewis Bird. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**C. Part of the solution region includes a negative width; therefore, not all solutions are viable for the given situation.**

Solución

To model the carpenter's situation, let's define the variables and set up the inequalities based on the given conditions: - **Variables:** - \( x \): Width of the tabletop (in feet) - \( y \): Length of the tabletop (in feet) - **Conditions:** 1. **Perimeter Constraint:** The perimeter of a rectangle is given by \( 2x + 2y \). The carpenter wants the perimeter to be no more than 28 feet: \[ 2x + 2y \leq 28 \] Simplifying: \[ x + y \leq 14 \] 2. **Length Constraint:** The carpenter wants the length \( y \) to be at least the square of 2 feet less than its width: \[ y \geq (x - 2)^2 \] - **System of Inequalities:** \[ \begin{cases} x + y \leq 14 \\ y \geq (x - 2)^2 \end{cases} \] - **Analyzing the Solution Region:** - **Graphical Interpretation:** - The inequality \( x + y \leq 14 \) represents a region below the line \( y = 14 - x \). - The inequality \( y \geq (x - 2)^2 \) represents a region above the parabola \( y = (x - 2)^2 \). - **Intersection Points:** Solving \( (x - 2)^2 = 14 - x \) gives \( x = 5 \) and \( x = -2 \). However, \( x = -2 \) (a negative width) is not physically meaningful for the tabletop. - **Viable Solutions:** While there are points that satisfy both inequalities, some of these points involve negative values for \( x \), which would imply a negative width. Since negative dimensions are not feasible in this context, not all solutions within the mathematical system are viable for the actual situation. **Conclusion:** **Option C** accurately describes the scenario: **"Part of the solution region includes a negative width; therefore, not all solutions are viable for the given situation."** **Answer:** **C. Part of the solution region includes a negative width; therefore, not all solutions are viable for the given situation.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In the case of a rectangular tabletop, the perimeter is determined by the formula \( P = 2x + 2y \). To meet the carpenter's requirement, we have the inequality \( 2x + 2y \leq 28 \), which simplifies to \( x + y \leq 14 \). Additionally, for the length, the requirement translates to \( y \geq (x - 2)^2 \). When graphed, these inequalities create a shaded region representing potential dimensions of the tabletop. Now, discussing the answers, option A is indeed accurate! Since it’s possible to create scenarios where either the width or length could become negative in the solution region, not all solutions would work in the real-world context of constructing a table. This highlights the importance of considering practical constraints when working with theoretical math models!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad