Pregunta
upstudy study bank question image url

\( x = \frac { - 2 \pm \sqrt { 4 - 2 k } } { 5 } \)

Ask by Barker Floyd. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions to the equation \(5x^2 + 2x + k = 0\) are: \[ x = \frac{ -2 \pm \sqrt{4 - 2k} }{5} \] These solutions are real if \( k \leq 2 \).

Solución

The expression you've provided is: \[ x = \frac{ -2 \pm \sqrt{4 - 2k} }{5} \] This appears to be the solution to a quadratic equation of the form: \[ 5x^2 + 2x + k = 0 \] Let's break down and analyze this expression step by step. ### 1. **Standard Quadratic Formula** The general form of a quadratic equation is: \[ ax^2 + bx + c = 0 \] The solutions (roots) to this equation are given by the quadratic formula: \[ x = \frac{ -b \pm \sqrt{b^2 - 4ac} }{2a} \] Comparing this with your expression: \[ x = \frac{ -2 \pm \sqrt{4 - 2k} }{5} \] We can identify the coefficients: - \( a = 5 \) - \( b = 2 \) - \( c = k \) ### 2. **Discriminant Analysis** The discriminant \( D \) of a quadratic equation is: \[ D = b^2 - 4ac \] In your solution, the expression under the square root is \(4 - 2k\), which corresponds to the discriminant: \[ D = 4 - 2k \] The discriminant determines the nature of the roots: - **If \( D > 0 \)**: There are two distinct real roots. - **If \( D = 0 \)**: There is exactly one real root (a repeated root). - **If \( D < 0 \)**: There are two complex conjugate roots. ### 3. **Conditions for Real Solutions** To ensure the roots are real, the discriminant must be non-negative: \[ 4 - 2k \geq 0 \] Solving for \( k \): \[ 4 - 2k \geq 0 \\ -2k \geq -4 \\ k \leq 2 \] **Conclusion:** For the quadratic equation \(5x^2 + 2x + k = 0\), real solutions for \( x \) exist if and only if \( k \leq 2 \). ### 4. **Graphical Interpretation** If you were to graph the quadratic equation \(5x^2 + 2x + k = 0\): - The parabola opens upwards since the coefficient of \( x^2 \) (which is 5) is positive. - The vertex of the parabola shifts vertically based on the value of \( k \). - When \( k \leq 2 \), the parabola intersects the x-axis at two points (for \( k < 2 \)) or just touches the x-axis at one point (for \( k = 2 \)). - For \( k > 2 \), the parabola does not intersect the x-axis, implying no real roots. ### 5. **Example Calculations** Let's calculate the roots for specific values of \( k \): **a. When \( k = 0 \):** \[ x = \frac{ -2 \pm \sqrt{4 - 0} }{5} = \frac{ -2 \pm 2 }{5} \] This gives two solutions: \[ x = \frac{ -2 + 2 }{5} = 0 \\ x = \frac{ -2 - 2 }{5} = -\frac{4}{5} \] **b. When \( k = 2 \):** \[ x = \frac{ -2 \pm \sqrt{4 - 4} }{5} = \frac{ -2 \pm 0 }{5} = -\frac{2}{5} \] There is exactly one real root: \( x = -\frac{2}{5} \). **c. When \( k = 3 \):** \[ x = \frac{ -2 \pm \sqrt{4 - 6} }{5} = \frac{ -2 \pm \sqrt{-2} }{5} = \frac{ -2 \pm i\sqrt{2} }{5} \] Here, the solutions are complex numbers since the discriminant is negative. ### 6. **Summary** - The given expression represents the solutions to the quadratic equation \(5x^2 + 2x + k = 0\). - Real solutions exist only when \( k \leq 2 \). - The discriminant \( D = 4 - 2k \) determines the nature of the roots: - Two distinct real roots if \( k < 2 \). - One real repeated root if \( k = 2 \). - Two complex conjugate roots if \( k > 2 \). If you have a specific question or need further clarification on a particular aspect of this expression, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The equation you've shared is a solution to a quadratic equation in the standard form. The expression under the square root, \(4 - 2k\), signifies the discriminant. If the discriminant is positive, there are two distinct real solutions. If it's zero, there’s one real solution, and if it's negative, the solutions become complex numbers. So, knowing the value of \(k\) will determine how many real solutions you have! In terms of real-world applications, this formula can be seen in various fields like physics and engineering. For instance, when solving for the time it takes an object to reach the ground under the influence of gravity, this kind of quadratic equation pops up. Understanding how to manipulate and interpret these equations can assist in problem-solving scenarios related to projectile motion, financial forecasting, or determining trajectory paths in robotics!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad