Pregunta
Solve the following equation by factoring. \( z^{2}+2 z-15=0 \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution set is \( \} \) (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There is no solution.
Ask by Chambers Pritchard. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The solution set is \(\{-5, 3\}\).
Solución
To solve the quadratic equation \( z^{2} + 2z - 15 = 0 \) by factoring, follow these steps:
1. **Find two numbers that multiply to \(-15\) and add up to \(2\).**
- The numbers \(5\) and \(-3\) satisfy this condition because:
\[
5 \times (-3) = -15 \quad \text{and} \quad 5 + (-3) = 2
\]
2. **Factor the quadratic equation using these numbers:**
\[
z^{2} + 2z - 15 = (z + 5)(z - 3) = 0
\]
3. **Set each factor equal to zero and solve for \(z\):**
- \(z + 5 = 0 \Rightarrow z = -5\)
- \(z - 3 = 0 \Rightarrow z = 3\)
Therefore, the solution set is \(\{-5, 3\}\).
**Answer:**
**A. The solution set is \(\{-5, 3\}\)**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To factor the equation \( z^{2}+2 z-15=0 \), we need to find two numbers that multiply to -15 and add to 2. The numbers 5 and -3 fit perfectly! We can express the equation as \( (z + 5)(z - 3) = 0 \). By applying the zero product property, we get \( z + 5 = 0 \) or \( z - 3 = 0 \). This gives us the solutions \( z = -5 \) and \( z = 3 \). Thus, the solution set is \( \{-5, 3\} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium