Pregunta
upstudy study bank question image url

Factor the trinomial. \( 20 \mathrm{a}^{2}-23 \mathrm{ad}+6 \mathrm{~d}^{2} \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( 20 \mathrm{a}^{2}-23 a d+6 \mathrm{~d}^{2}=\square \) (Factor completely.) B. The trinomial is prime.

Ask by Gross Wood. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 20a^{2} -23ad +6d^{2} = (5a -2d)(4a -3d) \)

Solución

To factor the trinomial \( 20a^{2} - 23ad + 6d^{2} \), follow these steps: 1. **Identify the coefficients:** - \( a = 20 \) - \( b = -23 \) - \( c = 6 \) 2. **Find two numbers that multiply to \( a \times c = 20 \times 6 = 120 \) and add up to \( b = -23 \):** - The numbers are **-8** and **-15** because: - \( (-8) \times (-15) = 120 \) - \( (-8) + (-15) = -23 \) 3. **Rewrite the middle term using these numbers:** \[ 20a^{2} - 8ad - 15ad + 6d^{2} \] 4. **Factor by grouping:** \[ (20a^{2} - 8ad) + (-15ad + 6d^{2}) = 4a(5a - 2d) - 3d(5a - 2d) \] 5. **Factor out the common binomial factor:** \[ (5a - 2d)(4a - 3d) \] **Answer:** A. \( 20 a^{2} -23 a d +6 d^{2}=(5 a-2 d)(4 a-3 d) \) (Factor completely.)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To factor the trinomial \( 20 \mathrm{a}^{2}-23 \mathrm{ad}+6 \mathrm{~d}^{2} \), we can look for two numbers that multiply to \( 20 \cdot 6 = 120 \) and add up to \(-23\). The numbers \(-15\) and \(-8\) fit this requirement. We can regroup the middle term and factor by grouping: \[ 20 \mathrm{a}^2 - 15 \mathrm{ad} - 8 \mathrm{ad} + 6 \mathrm{d}^2. \] This can be grouped as: \[ 5\mathrm{a}(4\mathrm{a}-3\mathrm{d}) - 2(4\mathrm{a}-3\mathrm{d}). \] Factoring out the common term, we get: \[ (5\mathrm{a}-2)(4\mathrm{a}-3\mathrm{d}). \] So, the complete factorization is: A. \( 20 \mathrm{a}^{2}-23 a d+6 \mathrm{~d}^{2}=(5\mathrm{a}-2)(4\mathrm{a}-3\mathrm{d}) \). --- Did you know that factoring polynomials dates back to ancient civilizations? Babylonian mathematicians already had sophisticated ways of solving quadratic equations, laying the groundwork for modern algebra! Their methods were intuitive yet effective, showcasing the early fascination with patterns and relationships in numbers. When it comes to applications, factoring trinomials is vital in various fields, including physics and engineering, where you frequently encounter quadratic equations. Whether it’s calculating projectile motions or optimizing designs, being able to factor efficiently can simplify complex problems into manageable tasks. Plus, it’s a handy skill for analyzing functions in real-world situations!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad