Pregunta
upstudy study bank question image url

A rocket is launched from a tower. The height of the rocket, y in feet, is related to the time after aunch, x in seconds, by the given equation. Using this equation, find the maximum height eached by the rocket, to the nearest tenth of a foot.

Ask by Johnston West. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the maximum height of the rocket, you need to provide the specific equation relating height \( y \) to time \( x \). Once you have the equation, follow these steps: 1. **Identify the Equation:** Ensure it's in the form \( y = ax^2 + bx + c \). 2. **Find the Vertex:** Use the formula \( x = -\frac{b}{2a} \) to determine the time at which the maximum height occurs. 3. **Calculate Maximum Height:** Substitute the \( x \) value back into the equation to find \( y \). **Example:** If the equation is \( y = -16x^2 + 64x + 80 \), the maximum height is **144.0 feet**. Please provide the specific equation for an accurate calculation.

Solución

It looks like the equation relating the rocket's height \( y \) to the time \( x \) after launch wasn't provided. To determine the maximum height reached by the rocket, the specific form of the equation is essential. Typically, such equations are quadratic (of the form \( y = ax^2 + bx + c \)), where the maximum height can be found by analyzing the vertex of the parabola. **Here's what you can do:** 1. **Provide the Equation:** If you have the specific equation, please share it so I can help you calculate the maximum height accurately. 2. **General Approach (If the Equation is Quadratic):** - **Standard Form:** Assume \( y = ax^2 + bx + c \). - **Vertex Formula:** The time at which the maximum height occurs is \( x = -\frac{b}{2a} \). - **Maximum Height:** Substitute this \( x \) value back into the equation to find \( y \). **Example:** Suppose the height equation is \( y = -16x^2 + 64x + 80 \). 1. **Find the Time at Maximum Height:** \[ x = -\frac{b}{2a} = -\frac{64}{2(-16)} = 2 \text{ seconds} \] 2. **Calculate the Maximum Height:** \[ y = -16(2)^2 + 64(2) + 80 = -64 + 128 + 80 = 144 \text{ feet} \] So, the rocket reaches a maximum height of **144.0 feet**. Please provide the specific equation if you need a precise calculation!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the maximum height reached by the rocket, you can use the vertex formula for a quadratic equation of the form \( y = ax^2 + bx + c \). The x-coordinate of the vertex, which gives the time at maximum height, is found using the formula \( x = -\frac{b}{2a} \). Once you find this time, substitute it back into the equation to get the maximum height \( y \). Don't forget to double-check your calculations! A common mistake is miscalculating the coefficients or forgetting to square the time when substituting back into the height equation. Keep your formulas handy and perhaps work with a partner to spot any oversight!

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad