3. \( \quad \log _{5}(x+1)-\log _{5} x=2 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the equation \( \log _{5}(x+1) - \log _{5} x = 2 \), we can use the properties of logarithms. By applying the quotient rule, we can combine the logs on the left side: \[ \log_{5}\left(\frac{x+1}{x}\right) = 2. \] Next, we can rewrite this in exponential form, which gives us: \[ \frac{x+1}{x} = 5^2 = 25. \] Now, we can cross-multiply to eliminate the fraction: \[ x + 1 = 25x. \] Rearranging the equation, we get: \[ 1 = 25x - x, \] which simplifies to: \[ 24x = 1 \quad \Rightarrow \quad x = \frac{1}{24}. \] So the solution is \( x = \frac{1}{24} \). To verify, we can substitute back into the original equation. The left-hand side becomes: \[ \log_{5}\left(\frac{1}{24} + 1\right) - \log_{5}\left(\frac{1}{24}\right) = \log_{5}\left(\frac{25}{24}\right) - \log_{5}\left(\frac{1}{24}\right), \] which simplifies accurately and confirms our solution.