Pregunta
upstudy study bank question image url

Homework \#12 Distance on a Coordinate Grid \( \begin{array}{l}\text { 2. Find the distance } \\ \text { between the points } \\ (3,5) \text { and }(6,5)\end{array} \)

Ask by Bryant Deleon. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The distance between the points \((3, 5)\) and \((6, 5)\) is **3 units**.

Solución

To find the distance between the two points \((3, 5)\) and \((6, 5)\) on a coordinate grid, you can use the **distance formula**. However, in this case, since both points share the same \(y\)-coordinate, the problem simplifies considerably. Here's a step-by-step explanation: ### Step 1: Identify the Coordinates - **Point A:** \((3, 5)\) - **Point B:** \((6, 5)\) ### Step 2: Understand the Position - Both points have the same \(y\)-coordinate (\(5\)), which means they lie on a **horizontal line**. ### Step 3: Use the Distance Formula The general distance formula between two points \((x_1, y_1)\) and \((x_2, y_2)\) is: \[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in the values: \[ \text{Distance} = \sqrt{(6 - 3)^2 + (5 - 5)^2} \] \[ \text{Distance} = \sqrt{(3)^2 + (0)^2} \] \[ \text{Distance} = \sqrt{9 + 0} \] \[ \text{Distance} = \sqrt{9} \] \[ \text{Distance} = 3 \] ### Step 4: Conclusion The distance between the points \((3, 5)\) and \((6, 5)\) is **3 units**. --- **Visualization:** Since both points are on the same horizontal line (\(y = 5\)), the distance is simply the difference in their \(x\)-coordinates. ``` Point A: (3,5) --------- Point B: (6,5) ``` The number of units between \(3\) and \(6\) on the \(x\)-axis is \(3\) units.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the distance between the points (3,5) and (6,5), you can use the distance formula. However, since both points share the same \(y\)-coordinate, it simplifies things! The distance is simply the absolute difference between their \(x\)-coordinates: \( |6 - 3| = 3 \). So, the distance between the two points is 3 units along the x-axis. Next time you're on a coordinate grid and need to find distances, remember that horizontal and vertical distances can be easily calculated based on the differences in coordinates. It’s like measuring straight lines on a graph – just watch for those shared coordinates!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad