Pregunta
upstudy study bank question image url

A video game costs \( \$ 60 \) today. If the inflation rate is \( 4.75 \% \) and is compounde continuously how much will this same video game cost in 5 years?

Ask by Schofield Tyler. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The video game will cost approximately \$76.08 in 5 years.

Solución

To find the cost of the video game in 5 years with continuous compounding, we can use the formula for continuous compounding: \[ A = P \times e^{r \times t} \] Where: - \( A \) is the amount after time \( t \), - \( P \) is the principal amount (initial cost of the video game), - \( r \) is the annual inflation rate, - \( t \) is the time in years. Given: - Initial cost of the video game, \( P = \$60 \), - Inflation rate, \( r = 4.75\% = 0.0475 \), - Time, \( t = 5 \) years. Substitute the given values into the formula to find the cost of the video game in 5 years. Calculate the value by following steps: - step0: Calculate: \(60e^{0.0475\times 5}\) - step1: Multiply the numbers: \(60e^{0.2375}\) - step2: Convert the expressions: \(60e^{\frac{19}{80}}\) - step3: Rewrite the expression: \(60\sqrt[80]{e^{19}}\) The cost of the video game in 5 years with continuous compounding is approximately $76.08.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the future cost of the video game, you can use the formula for continuous compounding: \( A = Pe^{rt} \), where \( A \) is the amount of money accumulated after time \( t \), \( P \) is the principal amount (initial cost), \( r \) is the rate of interest (inflation rate), and \( t \) is the time in years. Here, \( P = 60 \), \( r = 0.0475 \), and \( t = 5 \). Plugging in the values gives: \[ A = 60 e^{(0.0475 \times 5)} \] Calculating this, you get: \[ A \approx 60 e^{0.2375} \approx 60 \times 1.26824 \approx 76.09 \] So, the video game will cost approximately \( \$76.09 \) in 5 years. --- Did you know that inflation has been a common thread in economic history? The concept of inflation dates back to ancient Rome, where it was primarily driven by the devaluation of currency. Fast forward to today, and various measures of inflation help us understand the purchasing power of money over time! When dealing with future prices and inflation, it's always a good idea to check for common mistakes. One common pitfall is forgetting to convert the percentage rate into decimal form before calculations. Also, double-checking the time frame used in the equation can prevent costly errors when budgeting for future expenses!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad