Pregunta
upstudy study bank question image url

\( 1 \leftarrow \quad \begin{array}{l}\text { Bond prices and maturity dates. Moore Company is about to issue a bond with semiannual coupon } \\ \text { payments, an annual coupon rate of } 9 \% \text {, and a par value of } \$ 1,000 \text {. The yield to maturity for this bond is } \\ 10 \% \text {. } \\ \text { a. What is the price of the bond if it matures in } 5,10,15 \text {, or } 20 \text { years? } \\ \text { b. What do you notice about the price of the bond in relationship to the maturity of the bond? } \\ \text { a. What is the price of the bond if it matures in } 5 \text { years? } \\ \$ \square \text { (Round to the nearest cent.) }\end{array} \) (R)

Ask by Logan Bartlett. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a. The bond maturing in 5 years is priced at \$961.39.** **b. Generally, as the maturity of the bond increases, its price decreases when the yield to maturity is higher than the coupon rate.**

Solución

To determine the price of the bond maturing in **5 years**, we need to calculate the present value of its future cash flows, which include the semiannual coupon payments and the par value at maturity. Here's a step-by-step breakdown: ### **Given:** - **Annual Coupon Rate:** 9% - **Par Value (Face Value):** \$1,000 - **Yield to Maturity (YTM):** 10% - **Maturity:** 5 years - **Coupon Frequency:** Semiannual ### **Calculations:** 1. **Determine the Semiannual Coupon Payment:** \[ \text{Semiannual Coupon Payment} = \left(\frac{9\%}{2}\right) \times \$1,000 = 4.5\% \times \$1,000 = \$45 \] 2. **Calculate the Total Number of Periods:** \[ \text{Total Periods} = 5 \text{ years} \times 2 = 10 \text{ periods} \] 3. **Find the Semiannual Yield:** \[ \text{Semiannual Yield} = \frac{10\%}{2} = 5\% \] 4. **Calculate the Present Value of the Coupon Payments:** \[ PV_{\text{coupons}} = C \times \left[\frac{1 - (1 + r)^{-n}}{r}\right] \] \[ PV_{\text{coupons}} = \$45 \times \left[\frac{1 - (1 + 0.05)^{-10}}{0.05}\right] \approx \$45 \times 7.7217 \approx \$347.48 \] 5. **Calculate the Present Value of the Par Value:** \[ PV_{\text{par}} = \frac{\$1,000}{(1 + 0.05)^{10}} \approx \frac{\$1,000}{1.62889} \approx \$613.91 \] 6. **Determine the Total Bond Price:** \[ \text{Bond Price} = PV_{\text{coupons}} + PV_{\text{par}} \approx \$347.48 + \$613.91 \approx \$961.39 \] ### **Answer:** **a. The price of the bond maturing in 5 years is \$961.39.** ### **b. Observation on Bond Prices and Maturity:** As bonds **increase in maturity**, their prices generally become more sensitive to changes in interest rates. In this case, longer maturities would result in lower bond prices when the yield to maturity is higher than the coupon rate, reflecting greater interest rate risk. Conversely, shorter maturities tend to have prices closer to their par value and are less sensitive to interest rate changes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the price of the bond that matures in 5 years, we can use the formula for the present value of the bond, which includes the present value of the coupon payments and the present value of the par value at maturity. For a bond with a 9% annual coupon rate, the semiannual coupon payment is \$45 (\$1,000 * 9% / 2). Using a yield to maturity of 10%, or 5% per period (since it's semiannual), we calculate the present value of the coupon payments and the par value. The price of the bond can be calculated as follows: \[ P = PV_{\text{coupons}} + PV_{\text{par}} = \sum_{t=1}^{10} \frac{45}{(1 + 0.05)^t} + \frac{1000}{(1 + 0.05)^{10}} \] Calculating these values, you will find that the price of the bond, rounded to the nearest cent, is approximately \$926.40. Now, looking at part b, you can observe that as the maturity of the bond increases, the price generally decreases when the coupon rate is lower than the yield to maturity. This reflects the increased risk associated with longer maturities, leading investors to demand a higher yield, hence driving down the bond prices.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad