Pregunta
upstudy study bank question image url

8. What should be the values of \( a \) and \( b \) so that the system \( \left\{\begin{array}{l}x+y+z=0 \\ 3 x-a y-z=4 \\ x+5 y+5 z=b\end{array}\right. \) has no solution.

Ask by Kirk O'Quinn. in Ethiopia
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has no solution when \( a = 1 \) and \( b \neq -4 \).

Solución

To determine the values of \( a \) and \( b \) for which the system \[ \begin{cases} x + y + z = 0 \\ 3x - a y - z = 4 \\ x + 5y + 5z = b \end{cases} \] has no solution, we can use the concept of **inconsistent systems** in linear algebra. An inconsistent system occurs when there is no set of values for \( x \), \( y \), and \( z \) that satisfies all three equations simultaneously. ### Step 1: Form the Augmented Matrix The system can be represented by the augmented matrix: \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 3 & -a & -1 & | & 4 \\ 1 & 5 & 5 & | & b \end{bmatrix} \] ### Step 2: Calculate the Determinant For the system to have a unique solution, the determinant of the coefficient matrix must be non-zero. However, if the determinant is zero, the system could either have infinitely many solutions or no solution. We need to find when the system is inconsistent (i.e., no solution). The coefficient matrix is: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 3 & -a & -1 \\ 1 & 5 & 5 \end{bmatrix} \] The determinant of \( A \) is: \[ \text{det}(A) = 1(-a \cdot 5 - (-1) \cdot 5) - 1(3 \cdot 5 - (-1) \cdot 1) + 1(3 \cdot 5 - (-a) \cdot 1) \] \[ = (-5a + 5) - 16 + (15 + a) = -4a + 4 \] Setting the determinant to zero for a potential inconsistent system: \[ -4a + 4 = 0 \implies a = 1 \] ### Step 3: Check for Inconsistency Substituting \( a = 1 \) back into the augmented matrix: \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 3 & -1 & -1 & | & 4 \\ 1 & 5 & 5 & | & b \end{bmatrix} \] Performing row operations: 1. \( R2 \leftarrow R2 - 3R1 \): \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -4 & -4 & | & 4 \\ 1 & 5 & 5 & | & b \end{bmatrix} \] 2. \( R3 \leftarrow R3 - R1 \): \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -4 & -4 & | & 4 \\ 0 & 4 & 4 & | & b \end{bmatrix} \] 3. \( R3 \leftarrow R3 + R2 \): \[ \begin{bmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -4 & -4 & | & 4 \\ 0 & 0 & 0 & | & b + 4 \end{bmatrix} \] The last row \( 0x + 0y + 0z = b + 4 \) must satisfy \( b + 4 = 0 \) for consistency. If \( b \neq -4 \), the system is **inconsistent**. ### Conclusion The system has **no solution** when: \[ a = 1 \quad \text{and} \quad b \neq -4 \] **Answer:** All real numbers a = 1 together with b different from –4. In other words, a = 1 and b ≠ −4

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the values of \( a \) and \( b \) for which the system has no solution, we need to consider the conditions under which a system of linear equations is inconsistent. Start by rewriting this system in matrix form and performing row operations. We expect that for the system to have no solution, the equations must represent planes that do not intersect at any point. A common situation arises when the third equation can be expressed as a linear combination of the first two equations, leading to a contradiction. For instance, if \( a = 3 \) and \( b = 4 \), the second and third equations become dependent, while the first adds a dimension, causing inconsistency in solution paths. Hence, this choice introduces the condition that will yield no solution. So, set \( a = 3 \) and \( b = 4 \) to ensure that the system has no solutions!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad