Pregunta
upstudy study bank question image url

The amount of plutonium remaining from 1 kilogram after \( x \) years is given by the function \( W(x)=2^{-\frac{x}{24,360}} \) (a) How much will be left after 5000 years? (b) How much will be left after 8000 years? (c) How much will be left after 16,000 years? (d) Estimate how long it will take for the 1 kilogram to decay to half its original weight.

Ask by Nguyen Lynch. in the United States
Feb 07,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After 5000 years, about 0.87 kg remain. After 8000 years, about 0.80 kg remain. After 16,000 years, about 0.63 kg remain. It takes 24,360 years for the plutonium to decay to half its original weight.

Solución

The decay model is given by   W(x) = 2^(–x/24360) where x is the number of years and W(x) is the amount (in kilograms) remaining from an initial 1 kilogram. (a) For x = 5000 years, substitute into the function:   W(5000) = 2^(–5000/24360) Calculate the exponent:   5000/24360 ≈ 0.2054 Thus:   W(5000) ≈ 2^(–0.2054) To convert to an exponential function:   2^(–0.2054) = exp(–0.2054 × ln 2) Since ln 2 ≈ 0.6931,   W(5000) ≈ exp(–0.2054 × 0.6931) = exp(–0.1423) ≈ 0.8677 So, approximately 0.87 kilograms remain after 5000 years. (b) For x = 8000 years:   W(8000) = 2^(–8000/24360) Calculate the exponent:   8000/24360 ≈ 0.3284 Thus:   W(8000) ≈ 2^(–0.3284) = exp(–0.3284 × ln 2)       ≈ exp(–0.3284 × 0.6931) = exp(–0.2274) ≈ 0.7966 So, approximately 0.80 kilograms remain after 8000 years. (c) For x = 16,000 years:   W(16,000) = 2^(–16000/24360) Calculate the exponent:   16000/24360 ≈ 0.6568 Thus:   W(16,000) ≈ 2^(–0.6568) = exp(–0.6568 × ln 2)       ≈ exp(–0.6568 × 0.6931) = exp(–0.455) ≈ 0.6346 So, approximately 0.63 kilograms remain after 16,000 years. (d) To find the time it takes for 1 kilogram to decay to half its original weight, we set W(x) equal to 0.5:   W(x) = 2^(–x/24360) = 0.5 But 0.5 can be written as 2^(–1), so we have:   2^(–x/24360) = 2^(–1) Since the bases are the same, the exponents must be equal:   –x/24360 = –1 Multiply both sides by –24360:   x = 24360 Thus, it takes 24,360 years for the plutonium to decay to half its original weight. Summary:  (a) After 5000 years: approximately 0.87 kg remain.  (b) After 8000 years: approximately 0.80 kg remain.  (c) After 16,000 years: approximately 0.63 kg remain.  (d) The half-life is 24,360 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find how much plutonium remains after a certain number of years using the function \( W(x) = 2^{-\frac{x}{24360}} \): (a) For \( x = 5000 \): \[ W(5000) = 2^{-\frac{5000}{24360}} \approx 2^{-0.205} \approx 0.841 \] So, after 5000 years, approximately 0.841 kilograms, or about 841 grams, will be left. (b) For \( x = 8000 \): \[ W(8000) = 2^{-\frac{8000}{24360}} \approx 2^{-0.328} \approx 0.791 \] Thus, about 0.791 kilograms, or approximately 791 grams, will remain after 8000 years. (c) For \( x = 16000 \): \[ W(16000) = 2^{-\frac{16000}{24360}} \approx 2^{-0.657} \approx 0.623 \] After 16,000 years, there will be approximately 0.623 kilograms, or 623 grams, left. (d) To estimate the time it takes for the plutonium to decay to half its original weight (1 kg to 0.5 kg), we set \( W(x) = 0.5 \): \[ 0.5 = 2^{-\frac{x}{24360}} \] Taking the logarithm base 2 of both sides: \[ -\frac{x}{24360} = -1 \Rightarrow x = 24360 \] Therefore, it will take approximately 24,360 years to decay to half its original weight.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad