\( \left. \begin{array} { l } { 6 x + 10 y = 0 } \\ { - 6 x - 5 y = 15 } \\ \hline \end{array} \right. \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the system of equations, start by rewriting them for clarity: 1. \( 6x + 10y = 0 \) (Equation 1) 2. \( -6x - 5y = 15 \) (Equation 2) From Equation 1, we can express \( x \) in terms of \( y \) by rearranging it: \( 6x = -10y \) \( x = -\frac{10}{6}y = -\frac{5}{3}y \) Next, substitute this expression for \( x \) into Equation 2: \(-6\left(-\frac{5}{3}y\right) - 5y = 15\) This simplifies to: \( 10y - 5y = 15 \) Which combines to: \( 5y = 15 \) Thus, \( y = 3 \). Now plug the value of \( y \) back into the expression for \( x \): \( x = -\frac{5}{3}(3) = -5 \). So the solution to the system is \( x = -5 \) and \( y = 3 \). Now evaluating both equations confirms that these values satisfy both simultaneously! Hooray for solutions!