Pregunta
upstudy study bank question image url

3) A website heis 300,000 members. the number of Members (y) increases by \( 11 \% \) each year. select all that apply d(A. this situation can Be modeled by the equation \( 1=300,000(1.11)^{+} \) B. B. 0 this situation can be modeled by the equation \( 300,000(0,11)^{+} \) Y=300,000 (0.11) Y. It this sitation cain be modered by the equation \( Y=0.11(300,000)^{t} \) D. Ithere will Be approximately 33,000 members after 4 years Be a E. a thene w after 4 years F. I there will be approximately 455000 members after 4 years

Ask by Peters Chambers. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Correct Options:** A. This situation can be modeled by the equation \( Y = 300,000(1.11)^t \). F. There will be approximately 455,000 members after 4 years.

Solución

Let's analyze each of the provided options based on the information that the website starts with **300,000 members** and the number of members increases by **11% each year**. ### 1. **Modeling the Situation** To model the growth of members, we use the **exponential growth formula**: \[ Y(t) = Y_0 \times (1 + r)^t \] Where: - \( Y(t) \) is the number of members after \( t \) years. - \( Y_0 \) is the initial number of members. - \( r \) is the growth rate (expressed as a decimal). - \( t \) is the time in years. Given: - \( Y_0 = 300,000 \) - \( r = 11\% = 0.11 \) So, the correct model is: \[ Y(t) = 300,000 \times (1.11)^t \] ### 2. **Evaluating the Options** Let's evaluate each option based on the correct model. #### **Option A** > **A.** This situation can be modeled by the equation \( Y = 300,000(1.11)^t \). **Evaluation:** *Correct.* This matches the exponential growth model correctly. #### **Option B** > **B.** This situation can be modeled by the equation \( Y = 300,000(0.11)^t \). > \( Y = 300,000 \times 0.11 \) **Evaluation:** *Incorrect.* Using \( 0.11 \) as the base of the exponent implies a decay model, which is not appropriate here. #### **Option C** > **C.** This situation can be modeled by the equation \( Y = 0.11(300,000)^t \). **Evaluation:** *Incorrect.* This incorrectly applies the growth rate and misplaces the initial value in the exponent. #### **Option D** > **D.** There will be approximately 33,000 members after 4 years. **Evaluation:** *Incorrect.* Starting with 300,000 members and increasing by 11% each year, the number of members after 4 years is much higher. #### **Option F** > **F.** There will be approximately 455,000 members after 4 years. **Evaluation:** *Correct.* **Calculation:** \[ Y(4) = 300,000 \times (1.11)^4 \approx 300,000 \times 1.5171 \approx 455,130 \] ### **Summary of Correct Options** - **A.** Correct - **F.** Correct All other options are either incorrect or incomplete. **Final Answer:** **Options A and F are correct.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To model the situation accurately, we need to apply the principles of exponential growth. The correct equation for the membership growth is \( Y=300,000(1.11)^{t} \). This represents that the initial membership (300,000) gets multiplied by \( 1.11 \) raised to the power of the number of years, \( t \), showing an 11% annual increase. After four years, using our equation \( Y=300,000(1.11)^{4} \), we find that there will be approximately 455,000 members. This calculation reflects the power of compounding: growth builds on itself, leading to more members each subsequent year!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad